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(1 read and 1 write) or (2 write
requests) received 505

Consult table to translate read request’s (or
one write request’s) virtual address to
physical address. 510

Figure 5

Access that physical address and perform the
requested memory operation. (Either write to
that address or read data from that address and
respond to the read request with the data). 520

Consult table to translate (other) write
request’s virtual address to physical
address. 530

Bank conflict with
the first memo
request handled?

v
Write data to the physical address
corresponding to write request’s
virtual address. 540

Consult mapping table to locate a
free physical address in a different
memory bank to avoid conflict. 550

Write data to the physical address in
the free memory bank. 555

v

Update mapping table to reflect the new
physical address associated with the virtual
address of the write request. 560

__________________ S

Update mapping table to reflect the
newly freed physical address. 5§70
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HIGH SPEED MEMORY SYSTEMS AND
METHODS FOR DESIGNING
HIERARCHICAL MEMORY SYSTEMS

RELATED APPLICATIONS

The present patent application claims priority to U.S.
Provisional Patent Application entitled “SYSTEMS AND
METHOD FOR REDUCED LATENCY CACHING” filed
on Dec. 15, 2009 having Ser. No. 61/284,260, and also is a
continuation in-part of the previous U.S. patent application
entitled “SYSTEM AND METHOD FOR STORING DATA
IN'AVIRTUALIZED HIGH SPEED MEMORY SYSTEM”
filed on Sep. 8, 2009 having Ser. No. 12/584,645, now U.S.
Pat. No. 8,433,880, which claims priority to U.S. Provi-
sional Patent Application entitled “SYSTEM AND
METHOD FOR STORING DATA IN A VIRTUALIZED
HIGH SPEED MEMORY SYSTEM” filed on Mar. 17, 2009
having Ser. No. 61/161,025.

TECHNICAL FIELD

The present invention relates to the field of memory
systems for of digital computer systems. In particular, but
not by way of limitation, the present invention discloses
techniques for designing and constructing hierarchical digi-
tal memory systems.

BACKGROUND

Most modern computer systems include at least one
processor for processing computer instructions and a main
memory system that stores the instructions and data pro-
cessed by the processor. The main memory system is gen-
erally implemented with some form of Dynamic Random
Access Memory generally known as DRAM. DRAM
devices have a very high memory density (amount of data
stored per area of integrated circuit used), low power usage,
and a relative inexpensive cost. Thus, DRAM devices are
used to construct large main memory systems for computer
systems.

The speed at which computer processors operate has been
continually increasing. Specifically, decreasing the size of
the semiconductor transistors and decreasing the operating
voltages of these transistors has allowed processor clocks to
run at faster rates. However, the performance of DRAM
main memory systems that provide data to these faster
processors have not kept pace with the increasingly faster
processors. Thus, DRAM based main memory systems have
become a bottleneck for computer performance. To mitigate
this issue, larger Static Random Access Memory (SRAM)
based cache memory systems are often used. SRAM devices
operate at much faster rates than DRAM devices but have a
lower memory density, consume more power, and are more
expensive. Furthermore, cache memory systems only pro-
vide a speed improvement when a cache “hit” occurs (the
needed data is available in the cache memory system). When
a cache miss occurs, data must be fetched from the lower
speed DRAM memory system. In some applications that
require a guaranteed fast performance, the use of cache
memory system will not suffice. Thus, it is desirable to
improve the speed of memory systems such that memory
systems can handle memory read and write operations as
fast as possible.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals describe substantially similar components
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throughout the several views. Like numerals having differ-
ent letter suffixes represent different instances of substan-
tially similar components. The drawings illustrate generally,
by way of example, but not by way of limitation, various
embodiments discussed in the present document.

FIG. 1 illustrates a diagrammatic representation of
machine in the example form of a computer system within
which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed.

FIG. 2A illustrates a conceptual diagram of a pipelined
processing system used in digital electronics.

FIG. 2B illustrates a time flow diagram of instructions
flowing through the pipelined processing system of FIG. 2A.

FIG. 2C illustrates a time flow diagram with result data
being propagated back to an earlier pipeline stage.

FIG. 3 illustrates a high level conceptual diagram of a
virtualized memory system 300.

FIG. 4 illustrates a block diagram of a first embodiment
of an algorithmic memory block that can handle either
simultaneous read and write operations or two simultaneous
write operations.

FIG. 5 illustrates a flow diagram describing the operation
of the algorithmic memory block disclosed in FIG. 4.

FIG. 6A illustrates an algorithmic memory block as
disclosed in FIG. 4 receiving write to virtualized address 101
and write to virtualized address 103.

FIG. 6B illustrates the algorithmic memory block of FIG.
6A after processing the write to virtualized address 101 and
the write to virtualized address 103.

FIG. 6C illustrates the algorithmic memory block of FIG.
6B receiving write to virtualized address 201 and read of
virtualized address 204.

FIG. 6D illustrates the algorithmic memory block of FIG.
6C after processing the write to virtualized address 201 and
read of virtualized address 204.

FIG. 6E illustrates an algorithmic memory block that can
handle multiple write memory operations receiving four
different simultaneous memory operations.

FIG. 6F illustrates the algorithmic memory block of FIG.
6F after processing the four different simultaneous memory
operations.

FIG. 7 illustrates an algorithmic memory block that can
handle two simultaneous read operations using two inde-
pendent memory arrays.

FIG. 8 illustrates an algorithmic memory block that can
handle two simultaneous read operations using an extra
memory bank with a second encoded copy of each data item.

FIG. 9A illustrates an algorithmic memory block using
the teachings of FIG. 8 receiving a single write operation to
address 302.

FIG. 9B illustrates the algorithmic memory block of FIG.
9A after handling the single write operation with a first
method.

FIG. 9C illustrates an algorithmic memory block using
the teachings of FIG. 8 receiving a read operation for
address 103 and a read operation for address 101.

FIG. 9D illustrates the algorithmic memory block of FIG.
9C handling the two read operations.

FIG. 9E illustrates an algorithmic memory block using the
teachings of FIG. 8 receiving a read operation for address
103 and a read operation for the entire 01 row.

FIG. 9F illustrates the algorithmic memory block of FIG.
9E handling the two read operations.

FIG. 9G illustrates an algorithmic memory block using
the teachings of FIG. 8 receiving a single write operation to
address 302.
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FIG. 9H illustrates the algorithmic memory block of FIG.
9G after handling the single write operation with a second
method using two port memories.

FIG. 91 illustrates an algorithmic memory block receiving
a single write operation to address 302 and executing a first
cycle of operations.

FIG. 9] illustrates the algorithmic memory block of FIG.
91 executing a second cycle of operations to handle the
single write operation.

FIG. 9K illustrates an algorithmic memory block using
the teachings of FIG. 8 receiving a read operation for
address 304 and a write operation for address 302.

FIG. 9L illustrates the algorithmic memory block of FIG.
91 after handling the read and write operations.

FIG. 10 illustrates an algorithmic memory block for
handling four simultaneous read operations.

FIG. 11A illustrates how a first data value is read from the
B11 block of the algorithmic memory block of FIG. 10.

FIG. 11B illustrates how a second data value is read from
the B11 block of the algorithmic memory block of FIG. 10.

FIG. 11C illustrates how a third data value is read from the
B11 block of the algorithmic memory block of FIG. 10.

FIG. 11D illustrates all of the memory blocks read during
the read operations depicted in FIGS. 11A, 11B, and 11C.

FIG. 11E illustrates how a fourth data value is read from
the B11 block of the algorithmic memory block of FIG. 10.

FIG. 11F illustrates how a data value is read from the B07
block of the algorithmic memory block of FIG. 10.

FIG. 12A illustrates an algorithmic memory block using
the teachings of FIG. 7 receiving a read operation for
address 302 and a write operation for same address 302
wherein both operations are associated with an update
operation.

FIG. 12B illustrates the algorithmic memory block of
FIG. 12A after handling the read and write operations.

FIG. 12C illustrates an algorithmic memory block using
the teachings of FIG. 7 receiving a read operation for
address 302 and a write operation for same address 104
wherein both operations are associated with an update
operation.

FIG. 12D illustrates the algorithmic memory block of
FIG. 12C after handling the read and write operations.

FIG. 12E illustrates an algorithmic memory block using
the teachings of FIG. 7 receiving a read operation for
address 301 and a write operation for same address 302
wherein both operations are associated with an update
operation.

FIG. 12F illustrates the algorithmic memory block of FIG.
12E after handling the read and write operations.

FIG. 13 illustrates an algorithmic memory block for
handling read, read-clear, and write operations.

FIG. 14A illustrates an algorithmic memory block using
the teachings of FIG. 13 receiving a write operation for
address 302.

FIG. 14B illustrates the algorithmic memory block of
FIG. 14A after handling the write operation.

FIG. 14C illustrates the algorithmic memory block of
FIG. 14B receiving a write operation for address 102.

FIG. 14D illustrates the algorithmic memory block of
FIG. 14C after handling the write operation.

FIG. 14E illustrates an algorithmic memory block using
the teachings of FIG. 13 receiving a write operation for
address 100 and a read operation for address 104.

FIG. 14F illustrates the algorithmic memory block of FIG.
14E after handling the write operation and the read operation
if the read operation was a normal read operation.
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FIG. 14G illustrates the algorithmic memory block of
FIG. 14E after handling the write operation and the read
operation if the read operation was a read-clear operation.

FIG. 15A illustrates a first embodiment of a hierarchical
memory system that can handle two simultaneous read
operations and two simultaneous write operations.

FIG. 15B illustrates how the hierarchical memory system
of FIG. 15A avoids memory bank conflicts.

FIG. 15C conceptually illustrates the hierarchical memory
organization of the hierarchical memory system of FIG.
15A.

FIG. 16 illustrates the hierarchical memory system of
FIG. 15A extended to handle additional simultaneous read
and write operations.

FIG. 17A illustrates a second embodiment of a hierarchi-
cal memory system that can handle two simultaneous read
operations and two simultaneous write operations.

FIG. 17B illustrates how the hierarchical memory system
of FIG. 17A handles two simultaneous read operations and
two simultaneous write operations all directed toward the
same memory bank in the same memory block.

FIG. 17C illustrates how the hierarchical memory system
of FIG. 17A uses an extra memory bank to prevent conflicts
between read operations and write operations.

FIG. 17D conceptually illustrates the hierarchical
memory organization of the hierarchical memory system of
FIG. 17A.

FIG. 18 illustrates a conceptual diagram depicting differ-
ent paths to achieve the same type of multiple read and
multiple write memory systems.

DETAILED DESCRIPTION

The following detailed description includes references to
the accompanying drawings, which form a part of the
detailed description. The drawings show illustrations in
accordance with example embodiments. These embodi-
ments, which are also referred to herein as “examples,” are
described in enough detail to enable those skilled in the art
to practice the invention. It will be apparent to one skilled in
the art that specific details in the example embodiments are
not required in order to practice the present invention. For
example, although some of the example embodiments are
disclosed with reference to computer processing systems
used for packet-switched networks, the teachings can be
used in many other environments. Thus, any digital system
that uses digital memory can benefit from the teachings of
the present disclosure. The example embodiments may be
combined, other embodiments may be utilized, or structural,
logical and electrical changes may be made without depart-
ing from the scope of what is claimed. The following
detailed description is, therefore, not to be taken in a limiting
sense, and the scope is defined by the appended claims and
their equivalents.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one. In this document, the term “or” is used to refer to a
nonexclusive or such that “A or B” includes “A but not B,”
“B but not A,” and “A and B,” unless otherwise indicated.
Furthermore, all publications, patents, and patent documents
referred to in this document are incorporated by reference
herein in their entirety, as though individually incorporated
by reference. In the event of inconsistent usages between
this document and those documents so incorporated by
reference, the usage in the incorporated reference(s) should
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be considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document
controls.

Computer Systems

The present disclosure concerns digital computer systems.
FIG. 1 illustrates a diagrammatic representation of a
machine in the example form of a computer system 100 that
may be used to implement portions of the present disclosure.
Within computer system 100 of FIG. 1, there are a set of
instructions 124 that may be executed for causing the
machine to perform any one or more of the methodologies
discussed within this document.

In a networked deployment, the machine of FIG. 1 may
operate in the capacity of a server machine or a client
machine in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a network
server, a network router, a network switch, a network bridge,
or any machine capable of executing a set of computer
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Furthermore, while only a single
machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The example computer system 100 of FIG. 1 includes a
processor 102 (e.g., a central processing unit (CPU), a
graphics processing unit (GPU) or both) and a main memory
104 and a static memory 106, which communicate with each
other via a bus 108. The computer system 100 may further
include a video display adapter 110 that drives a video
display system 115 such as a Liquid Crystal Display (LCD)
or a Cathode Ray Tube (CRT). The computer system 100
also includes an alphanumeric input device 112 (e.g., a
keyboard), a cursor control device 114 (e.g., a mouse or
trackball), a disk drive unit 116, a signal generation device
118 (e.g., a speaker) and a network interface device 120.
Note that not all of these parts illustrated in FIG. 1 will be
present in all embodiments. For example, a computer server
system may not have a video display adapter 110 or video
display system 115 if that server is controlled through the
network interface device 120.

The disk drive unit 116 includes a machine-readable
medium 122 on which is stored one or more sets of computer
instructions and data structures (e.g., instructions 124 also
known as ‘software’) embodying or utilized by any one or
more of the methodologies or functions described herein.
The instructions 124 may also reside, completely or at least
partially, within the main memory 104 and/or within a cache
memory 103 associated with the processor 102. The main
memory 104 and the cache memory 103 associated with the
processor 102 also constitute machine-readable media.

The instructions 124 may further be transmitted or
received over a computer network 126 via the network
interface device 120. Such transmissions may occur utilizing
any one of a number of well-known transfer protocols such
as the well known File Transport Protocol (FTP).

While the machine-readable medium 122 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” shall also be taken to include
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any medium that is capable of storing, encoding or carrying
a set of instructions for execution by the machine and that
cause the machine to perform any one or more of the
methodologies described herein, or that is capable of storing,
encoding or carrying data structures utilized by or associated
with such a set of instructions. The term “machine-readable
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, optical media, and mag-
netic media.

For the purposes of this specification, the term “module”
includes an identifiable portion of code, computational or
executable instructions, data, or computational object to
achieve a particular function, operation, processing, or pro-
cedure. A module need not be implemented in software; a
module may be implemented in software, hardware/cir-
cuitry, or a combination of software and hardware.

Pipelining In Digital Circuit Design

Pipelining is a design technique used in modern digital
electronics. To perform a complex operation (such as a table
look-up, a multiplication, etc.), a digital computing system
must generally perform a sequential series of smaller indi-
vidual operations. These small individual operations may be
performed internally and a final result is provided.

If a computer system uses an individual instruction to
perform complex operations, then the processor executing
the instruction may decode the instruction, perform the
series of steps internally, and provide a processing result
before executing the next instruction. With such a processor
architecture, the processor requires a significant amount of
time to perform all of the individual steps to complete the
instruction. Thus, this architecture does not provide optimal
results.

To improve processing speeds, virtually all modern pro-
cessors (and other digital systems such as DSPs, ASICs, etc.)
implement “pipeline” processing architectures. In a pipe-
lined processor architecture, each individual step required to
implement a complex computer instruction is broken down
into an individual processing stage. The processing of a
complex computer instruction is then handled by having the
state data for the instruction proceed through the individual
processing stages one by one. Then, to achieve performance
gains, multiple complex instructions are handled at the same
time with each pipelined stage handling data from a pro-
cessing successive stage. This processing of multiple
instructions simultaneously greatly improves the perfor-
mance of the processor.

FIG. 2A illustrates a conceptual diagram of a pipeline for
processing a computer instruction. A computer instruction
205 enters the pipeline at a first processing stage, processing
stage A 210 in FIG. 2A. The computer instruction will then
pass through subsequent processing stages B 220, C 230,
and D 240. The computer instruction may pass through these
processing stages during sequential clock cycles of a clock
signal within the processor core. At the end of the processing
pipeline, some results 295 will be output. The results may be
the output of an arithmetic operation, the output of a logical
operation, the results of a comparison, or any other process-
ing result.

FIG. 2B conceptually illustrates how several instructions
may be processed in parallel in the pipelined processing
system of FIG. 2A. The diagram of FIG. 2B illustrates time
moving to the right along a horizontal axis and new instruc-
tions entering the pipeline along a vertical axis.

Initially, at time 261, a first instruction 210 enters stage A
as depicted by processing 211. Next, at time 262, the first
instruction 210 is passed to processing stage B as illustrated
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by processing 212. Simultaneously at time 262, a second
instruction 220 enters processing stage A as depicted by
processing 221.

Next, at time 263, the first instruction 210 is passed to
processing stage C as illustrated by processing 213. Simi-
larly, the second instruction 220 is passed to processing
stage B as illustrated by processing 222. And simultane-
ously, a third instruction 230 enters stage A of the processing
pipeline as depicted by processing 231.

The pipeline system proceeds to process instructions
sequentially in this manner. Thus, for every new time cycle,
a new instruction enters the pipeline and an older instruction
exits the pipeline. For example, at time 265, a new instruc-
tion 250 enters the pipeline as depicted with processing 251
but the first instruction 210 (at the top row) has completed
all four processing stages and is no longer in the pipeline.

In this manner, the processing pipeline is able to complete
an instruction in every clock cycle. There will be a latency
between when processing is started on an instruction and
when processing is finished for that instruction. However,
the throughput of the processor has been greatly increased
since an instruction is completed during every clock cycle.

One problem that may occur in a pipelined processing
system is that one instruction may be dependent on the
output of an earlier instruction. For example, an output data
value for a first instruction may be an input data value for a
later instruction. If that later instruction enters the pipeline
before the first instruction has been completed, the processor
cannot process that later instruction until it receives the
result from the earlier instruction.

There are different manners of handling this problem. The
ideal way to handle this problem is to process the instruction
normally but have the needed result data propagate back in
the instruction processing pipeline as soon as the needed
result data becomes available. For example, FIG. 2C con-
ceptually illustrates this solution.

Referring to FIG. 2C, a third instruction 230 enters the
instruction processing pipeline at stage 263. This third
instruction 230 is dependent on output data from the first
instruction 210. To handle the situation in the most efficient
manner, the system will continue processing normally and
resolve the data issue internally. Specifically, instruction 230
may be processed in the first processing stage 231 at time
232. However, this processing stage may not need the input
data yet. For example, stage 231 may simply decode the
instruction. Then, at time 264, instruction 210 may be near
completion and can pass the needed state data 207 back to
the earlier pipeline stage 232 that needs the state data 207 as
illustrated in FIG. 2C. With the needed state data now
available, instruction 230 can continue processing at stage C
233 at time 265 using the state data was propagated forward
up the pipeline.

Thus, as long as output data from earlier instructions can
be propagated back up the pipeline to later instructions that
need the data as inputs, then the processor pipeline can
continue operating despite various data dependencies. In
certain situations, the needed data cannot be propagated
back fast enough to allow a particular instruction to proceed
through the pipeline. When this occurs, a pipeline stall may
occur wherein the later instructions cannot advance along
the processing pipeline until the needed data becomes avail-
able. Thus, some “bubbles” may occur within the pipeline.
Although these bubbles may reduce performance to some
degree, the system will still be faster than a system that
completely processes every instruction before fetching a
subsequent instruction.
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The memory systems that will be disclosed in this docu-
ment often use a series of independent processing steps in
order to locate data, fetch data, resolve conflicts, store data,
and perform other operations. To implement these process-
ing steps in an efficient manner, the memory systems will
use pipelined design techniques as disclosed in this section.
However, instead of processing individual computer instruc-
tions, the pipeline will process a sequential series of memory
accesses (reads and writes).

In a memory system that uses pipelined logic, there can be
at least two different circumstances wherein data depen-
dency issues may occur: memory data dependencies and
internal state dependencies. Both types of dependencies
must be handled properly in order for the memory system to
provide proper results.

Memory data dependencies occur when data from one
unresolved memory operation is used within a later opera-
tion that follows shortly thereafter. For example, a read
operation from one memory location may shortly be fol-
lowed by a write operation to another memory location. If
these two memory requests enter a memory request process-
ing pipeline in close proximity, the data needed to perform
the memory write will not be available until the data fetch
for the memory read operation is performed. However, these
two instructions may both enter the memory request pro-
cessing pipeline and progress through the pipeline as long as
the data fetched for the memory read operation is propagated
back along the pipeline to the data write operation.

The other type of dependency issue involves internal state
data. The logic of memory request processing pipeline may
operate using several different pieces of internal state data.
This internal state data may include pointers, Boolean val-
ues, counters, coded values, etc. For example, one system
may keep track of a ‘free’ memory location that may be used
to store a data value if a memory bank conflict occurs. This
value will change upon each use since a new ‘free’ memory
location must be made available. If there is a long memory
request processing pipeline, then later memory instructions
will enter the memory request processing pipeline without
this needed information being available. However, as long as
the needed value is determined and propagated up the
memory request processing pipeline before the value is
needed, there will be no stall of the memory request pro-
cessing pipeline.

This document will disclose multi-step procedures that
must be performed in order to handle memory operations. In
should be assumed that these multi-step procedures will be
implemented with pipelined logic as set forth in this section.
Furthermore, if a particular data value needed to perform a
particular step is not available when the memory request
enters the memory request processing pipeline then that
needed data will be propagated back from a later processing
stage.

In a pipelined computer processor, the instruction stream
will include conditional branch instructions that will specify
if the processor should follow one instruction path or
another. Such branch instructions greatly increase the diffi-
culty of implementing a pipelined system since it is not clear
which instructions after a branch instructions should be
fetched. To handle this situation, most processors implement
a branch prediction system that makes an educated guess as
to the most probably direction that will be taken. However,
if the branch prediction unit predicts incorrectly, the instruc-
tion processing pipeline must be flushed and reloaded with
the proper instructions. Although this is a concern when
designing computer processors, this pipelining issue is gen-
erally not an issue in a memory system.
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Memory Design Overview and Methodology

This document discloses various different memory system
designs and methods of combining those memory system
designs to create sophisticated memory systems with spe-
cific design characteristics. Specifically, a memory system
with a desired set of memory requirements may be created
by combining together various different types of memory
blocks in a hierarchical arrangement that will fulfil the
desired memory requirements. The memory requirements
may include factors such as the number of simultaneous
reads, the number of simultaneous writes, the memory
system size, the data width, the clock speed, the maximum
acceptable latency, the minimum throughput, etc.

The sophisticated hierarchical memory system designs
are constructed from two different types of memory building
blocks: algorithmic memory building blocks and fundamen-
tal memory building blocks. The algorithmic memory build-
ing blocks are memory systems implement algorithms with
digital processing logic in order to improve the performance
of the memory system. The fundamental memory blocks
consist of various different memory circuit designs such as
DRAMs, SRAMs, etc.

Each of the algorithmic memory building blocks includes
internal memory that be constructed from other algorithmic
memory building blocks or with fundamental memory
building blocks. By using algorithmic memory building
blocks to provide memory services to higher level algorith-
mic memory building blocks various hierarchical memory
systems may be created. However, each hierarchical
memory arrangement ultimately terminates with fundamen-
tal memory blocks at the end (“leaf”) nodes of the hierarchy.

Almost any type of fundamental memory circuit design
may be used to construct the hierarchical memory systems
of the present disclosure. Each fundamental memory circuit
design provides different advantages and disadvantages.

Traditional Dynamic Random Access Memory (DRAM)
may be used to construct hierarchical memory systems using
the teachings of the present invention. However, since
traditional DRAM tends to be constructed using semicon-
ductor process technologies that differ from the semicon-
ductor process technologies used for most digital circuits
such as the logic circuitry is this disclosure, traditional
DRAM may not be the best choice of memory technology.

Embedded DRAM (eDRAM) is a volatile memory circuit
design that is now very often used since it may be con-
structed with the industry standard CMOS processes used to
fabricate most digital circuit designs. Embedded DRAM
(eDRAM) is generally for the main memory within ASIC
designs due to its high memory density.

Static Random Access Memory (SRAM) is often used
when DRAM or eDRAM memory technology does not
provide adequate memory performance. However, SRAM
generally requires more die area, consumes more power, and
generates more heat. Many different types of SRAM may be
used such as the higher density 3T-SRAM and 1T-SRAM.

In certain situations, individual flip-flops may be used to
implement small amounts of memory that must operate at
very high speeds. However, such memory should be used
sparingly due to the low memory density of using individual
flip-flops.

Thyristor RAM (T-RAM) may be used as a fundamental
memory design in the present disclosure. T-RAM is a type
of DRAM computer memory that exploits the electrical
property known as negative differential resistance. T-RAM
memory devices combine strengths of the DRAM (memory
density) and SRAM (high speed).
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Zero capacitor RAM (Z-RAM) may be used as a funda-
mental memory design in the present disclosure. Z-RAM is
a type of digital memory that uses the floating body effect of
silicon on insulator (SOI) process technology. Z-RAM
memory makers claim that Z-RAM technology provide
memory access speeds similar to traditional SRAM cells but
provides higher memory density due to the use of only a
single transistor.

The hierarchical memory systems will be disclosed pri-
marily with reference to volatile memory designs, however
hierarchical memory systems may also be constructed with
non-volatile memory. For example, flash memory cells may
be used in certain applications wherein non-volatile storage
is needed. Flash memory tends not to operate as fast as other
types of memory but has the advantage of not losing the
memory state when power is removed from the system.
Magnetoresistive Random Access Memory (MRAM) is
another type of non volatile memory technology that may be
used.

The various different memory types may be implemented
with various different features. For example, memory cells
may be implemented with a single port, two ports, or dual
ports. A single port memory can handle only one read
operation or one write operation. A two port memory has an
independent read port and an independent write port. Thus,
a two port memory can handle one read operation and one
write operation simultaneously. A dual port memory has two
completely independent memory ports. Thus, a dual port
memory can handle two read operations simultaneously, two
write operations simultaneously, or one read operation and
one write operation simultaneously. Memory cells may have
additional memory ports.

The above fundamental memory building blocks (and
others not disclosed) may be used to implement various
different algorithmic memory blocks. And these first-level
algorithmic memory blocks constructed from fundamental
memory devices may be used within other higher-level
algorithmic memory blocks to create complex hierarchical
memory systems. Note that the algorithmic memory blocks
combined in various arrangements may create various dif-
ferent dependencies that need to be taken into account by the
hierarchical circuit designs.

Algorithmic Memory Block Basics

To construct high performance memory systems, the
algorithmic memory blocks of present disclosure often
implement “virtualized memory systems”. These virtualized
memory systems generally provide memory performance
increases without imposing any specific programming
restraints upon the user of the virtualized memory system.
Greater details about virtualized memory systems can be
found in U.S. patent application entitled “SYSTEM AND
METHOD FOR STORING DATA IN A VIRTUALIZED
HIGH SPEED MEMORY SYSTEM” filed on Sep. 8, 2009
having Ser. No. 12/584,645.

A virtualized memory system operates in a manner analo-
gous to traditional virtual memory but with a different goal.
In traditional virtual memory system, a large virtual memory
space is mapped onto a small physical memory (with the aid
of'a long term storage system) to provide a programmer with
a larger memory space to work with. To the contrary, in a
virtualized memory system a smaller virtualized memory
space is mapped onto a larger physical memory space to
provide the programmer with improved memory perfor-
mance. The computer programmers work in the virtualized
memory address space without having to worry about the
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specific details of how the virtualized memory system
internally handles the data in a real physical memory address
space.

A memory controller in a virtualized memory system is
used to perform various logical operations that implement
the techniques which improve memory performance. The
memory controller may translate the memory requests made
in a virtualized address space into a real physical address
space using one of several different techniques. In one
technique, an extra memory bank and a set of address space
mapping tables is used to ensure there will be no memory
bank conflicts that will reduce memory performance. Using
the larger physical memory address space (the extra memory
bank), the virtualized memory system hides the effects of
any potential memory bank conflicts from the user of the
memory system. In other embodiments, the virtualized
memory system uses extra memory to encode a redundant
copy of each data item such that there are always at least two
different methods of fetching requested data.

FIG. 3 illustrates a high level conceptual diagram of a
virtualized memory system 3300. In the particular virtual-
ized memory system disclosed in FIG. 3, memory user 311
and memory user 312 access the same virtualized memory
system 300. The concurrent memory requests to the virtu-
alized memory system 300 may be from a single entity
operating at twice the speed of two individual entities. Thus,
processor 310 operating at twice the clock speed of memory
user 311 and memory user 312 could issue two consecutive
memory requests that would appear as two memory requests
received concurrently by virtualized memory system 300.

All of the memory access requests to the virtualized
memory system 300 are handled by a virtualized memory
system controller 321. The virtualized memory system con-
troller 321 receives memory access requests (reads, writes,
or other memory commands) containing virtualized memory
addresses and performs request memory operation. In some
embodiments, the virtualized memory system controller 321
translates virtualized memory addresses (in the virtualized
memory address space 304) into real physical memory
addresses in a larger physical memory address space 320.
The memory system controller 321 then accesses the
requested information using the physical addresses in the
physical memory address space 320. As set forth in an
earlier section of this document, the virtualized memory
system controller 321 may be implemented with pipelined
digital logic such that the virtualized memory system con-
troller 321 may be handling several sequentially received
memory requests through several processing stages concur-
rently.

The virtualized memory system controller 321 performs
the needed logical operations (such virtualized to physical
address translations) with the aid of virtualized memory
state information 323 in the virtualized memory system
controller 321. The virtualized memory state information
323 is a set of state information needed to implement the
particular memory performance technique implemented by
the virtualized memory system controller 321. For example,
in a virtualized memory system controller 321 that translates
from virtualized addresses to physical address, the virtual-
ized memory state information 323 may include virtual to
physical address translation tables. Other techniques will
maintain other state information.

The end result of the logical operations performed by the
virtualized memory system controller 321 using the virtu-
alized memory state information 323 is some type of
memory operation (a read, a write, or another memory
operation) on the physical memory address space 320.
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However, that “physical address space” 320 may be a real
physical memory address space implemented with funda-
mental memory blocks or it may actually be another algo-
rithmic memory building block. If the “physical address
space” is implemented with another algorithmic memory
block, that algorithmic memory building block will imple-
ment its own memory performance enhancing techniques. It
is this ability to design and build hierarchies of algorithmic
memory building blocks (which all ultimately terminate
with a fundamental memory block) that allows the system of
the present disclosure to construct a wide variety of complex
high-performance memory systems.

Thus, a key aspect of the present disclosure is the set of
different algorithmic memory building blocks used to create
complex memory systems. Fach different algorithmic
memory building block provides different features. The
following sections will describe a set of several different
algorithmic memory building blocks that may be used to
created hierarchical memory systems. However, the dis-
closed set of algorithmic memory building blocks is not
exhaustive.

Algorithmic Memory System 1: Extra Memory To Obtain
2x Performance (1R & 1W) or (1R or 2W)

The first algorithmic memory block is a memory block
that uses extra memory to allow either simultaneous read
and write operations; or two simultaneous write operations.
This algorithmic memory block operates by using extra
memory to prevent memory conflicts between the two
simultaneous memory operations. The extra memory may be
implemented in various different methods. For example, the
extra memory may comprise a cache that handles incoming
memory requests that may cause conflicts. However, this
section will primarily focus on an implementation which
uses an extra memory that is the same as the other memory
banks in the memory system.

FIG. 4 illustrates a block diagram of a first embodiment
of an algorithmic memory block 400 that can handle either
simultaneous read and write operations (1R1W); or two
simultaneous write operations (2W). The example depicted
in FIG. 4 and in the following description will provide
specific numbers of memory banks, memory addresses, etc.
However, it will be obvious to one skilled in the art that these
are just numbers for this one example implementation.
Various different memory system sizes may be constructed
using very different numbers of memory banks, memory
addresses, etc.

As previously depicted in the conceptual diagram of FIG.
3, the algorithmic memory block 400 mainly consists of a
memory system controller 421 and physical memory array
420. As set forth earlier, the “physical memory array” 420
may not actually be physical memory array. Instead, physi-
cal memory array 420 may be implemented with another
algorithmic memory block. However, for purposes of this
document, it will be referred to as a physical memory array
since that allows the familiar concept of virtual to physical
memory translation to be used in the explanation of the
algorithmic memory block 400.

Referring to the algorithmic memory block 400 of FIG. 4,
the physical memory array 420 is organized into five inde-
pendent memory banks (Bank A to E) having 100 rows each.
For ease of explanation, this document will refer to memory
bank sizes and memory addresses with base 10 (decimal)
numbers but most actual implementations would use an even
multiple of 2 for a base 2 (binary) address system. In the
algorithmic memory block 400 embodiment of FIG. 4 that
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has five memory banks with 100 rows in each memory bank,
there are 500 unique physical memory addresses in the
physical memory 420.

The algorithmic memory block 400 presents a virtualized
memory address space to users of the algorithmic memory
block 400 that is smaller than the actual physical address
space. Thus, in the embodiment of FIG. 4, an initial virtual
memory address space 404 (surrounded by a rectangle made
of dotted lines) comprising virtualized memory addresses
000 to 399 is represented within physical memory banks A
to D. Physical memory bank E does not initially represent
any of the virtualized memory locations such that memory
bank E’s memory locations are marked ‘empty’. As depicted
in FIG. 4, this document will specify a virtualized memory
address that is currently being represented by a physical
memory location as a three-digit virtualized memory address
within the box of the physical memory location. For
example, the physical memory location at row 00 of Bank B
initially represents virtualized memory address 100 such that
100’ is depicted within the box at row 00 of memory bank
B. As will be set forth later in this document, the actual
locations of the various virtualized memory addresses will
move around in the physical memory space 420. Thus, the
virtual memory address space 404 organization depicted in
FIG. 4 only represents one possible state of many.

In the algorithmic memory block 400 of FIG. 4, the
virtualized memory system controller 421 is responsible for
handling all virtualized memory access requests from the
memory user(s) 410. The memory system controller 421
translates virtualized memory addresses (the 000 to 399
addresses in FIG. 4) into actual physical memory-addresses
(identified in FIG. 4 by the memory bank letter and the row
within that memory bank) within the physical memory 420.
To accomplish this virtualized to physical address transla-
tion task, the memory system controller 421 uses a virtual-
ized memory mapping table 423.

In the specific virtualized memory system embodiment
illustrated in FIG. 4, the virtualized memory addresses are
split into a most significant digit (the first digit of a three
digit virtualized address) and two least significant digits (the
second two digits of a three digit virtualized address). The
virtualized memory system of FIG. 4 uses the least signifi-
cant digits of virtualized memory address (the second two
digits of the virtualized memory address) as the physical row
designation in the physical memory system. Thus, there is no
translation needed for the two least significant digits of the
virtualized memory address since they are the same as the
two least significant digits of the physical memory address.
Note that other embodiments may use other bits or even any
other type of suitable virtual-to-physical address translation
system.

The most significant digit of a virtualized memory address
must still be translated into a physical memory address. In
the system of FIG. 4, the most significant digit of a virtu-
alized memory address is translated into a physical memory
bank. To perform the translation, the virtualized memory
mapping table 423 includes a number of rows equal to the
number of rows in the memory banks and a number of
columns equal to the number of most significant address
digit possibilities (0, 1, 2, and 3 in this example of a
virtualized address space from 000 to 399). To translate from
the virtualized memory address to the physical memory
location, the virtualized memory system controller 421
examines the entry of the virtualized memory mapping table
423 having the same row of the virtualized memory address’
two least significant digits and the same column as the
virtualized memory address’ most significant digit. For
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example, to translate virtualized address 304 to a physical
memory location, the virtualized memory system controller
421 consults the entry of column ‘3’ and row 04’ to obtain
‘D’ as the memory bank that currently represents virtualized
address 304. Specifically, virtualized address 304 is cur-
rently represented in row 04 of memory bank D.

In addition to the 0 to 3 columns, the virtualized memory
mapping table 423 embodiment of FIG. 4 also includes a
column labelled “e”. This column is used to identify a
memory bank containing an empty memory location for that
particular designated row. For example, row ‘02’ of column
‘e’ in the virtualized memory mapping table 423 lists
memory bank ‘E’ as a memory bank with an empty location
for row 02. However, this column need not be implemented
since the memory bank with an empty memory location in
that particular row can be inferred by determining the
memory bank designation (A, B, C, D, or E) not represented
in the 0 to 3 columns of that same row.

The algorithmic memory block 400 of FIG. 4 is config-
ured to handle either a read request with a simultaneous
write request or two simultaneous write requests. The algo-
rithmic memory block 400 accomplishes these simultaneous
actions without ever forcing the memory user(s) 410 to stall
due to a memory bank conflict. Thus, even if the simulta-
neous memory request are directed to the same memory
bank (which would cause a memory bank conflict in most
memory systems), the algorithmic memory block 400 will
handle the two memory requests without stalling the
memory user(s) 410. Thus, the virtualized memory system
400 provides a guaranteed memory bandwidth such that all
applications which require a guaranteed memory access time
can use the virtualized memory system 400.

It should be noted that one situation that cannot be dealt
with easily is when both a read and a write are received at
the same time for the exact same virtualized address. Nor-
mally, a memory user should never issue such a pair of
simultaneous requests since there is really no reason to read
an address when that same address is being written to by the
same entity. However, if such a case occurs, the reader may
be given the original data or the newly written data depend-
ing on the particular implementation.

The virtualized memory system controller 421 prevents
memory bank conflicts wherein two memory operations are
simultaneously directed toward the same memory bank by
moving the virtualized memory address for a write operation
to an unused memory location in a different memory bank.
The unused memory location is located by reading the
virtualized memory table 423. After writing the data into that
formerly unused memory location the memory controller
421 then updates the virtualized memory table 423 with the
virtualized address from the write operation to reflect the
new location of data associated with that virtualized memory
address.

The technique is best described with the use of examples.
An example operation of the virtualized memory system 400
embodiment of FIG. 4 is set forth with reference to FIGS. 5,
6A, and 6B. FIG. 6A illustrates the same virtualized memory
system 400 of FIG. 4 in the same initial condition. If the
virtualized memory system controller simultaneously
receives a memory write to virtualized address 101, written
as W(101) in FIG. 6A, and memory write to virtualized
address 103, written as W(103), this memory access pattern
would normally cause a memory bank conflict since both
virtualized address 101 and 103 are in the same memory
bank (memory bank B).

To prevent the memory bank conflict, the virtualized
memory system controller 621 allows one of the write
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operations (the write to virtualized address 103 in this
example) to proceed as normal in physical memory bank B
but handles the other write to virtualized address 101 using
a different memory bank. The data currently residing in the
current physical memory location associated with virtual-
ized address 101 is no longer relevant since a new data value
is being written to virtualized address 101.

If instead of a write to address 103 it was a read from
address 103, the system would perform in the same manner.
Specifically, the read would be performed from address 103
and the write to address 101 would be placed in a different
memory bank to prevent a memory bank conflict. Note that
in this particular type of algorithmic memory block, the read
operation must always use the current physical location
associated with the requested virtualized address since that
is the only location where the data can be found.

The full chain of events will be set forth with reference to
the flow diagram disclosed in FIG. 5. Note that the flow
diagram of FIG. 5 is being used to disclose the method of
operation of the system in a simplified manner for explana-
tion purposes. In a physical implementation, several of the
stages disclosed in FIG. 5 (such as the table look-ups in
stages 510 and 530) may be performed in parallel.

Initially, at stage 505, the virtualized memory system
controller 521 receives either one read and one write request
or two write requests. (In the example of FIG. 6A it is write
requests to address 103 and to address 101). Next, at stage
510, the virtualized memory system controller 621 consults
the virtualized memory table 623 to determine the current
physical location the read address or one of the write
addresses. (In the example of FIG. 6A the write request to
address 103 is chosen.) The most significant digit of the
address is used to select a column and the two least signifi-
cant digits are used to select a row in virtualized memory
table 623 which specifies that virtualized address 103 is
currently located in memory bank B. Thus, the virtualized
memory system controller 621 accesses that physical
memory location and performs the requested memory opera-
tion (read or write) at stage 520.

At stage 530, the virtualized memory system controller
621 consults the virtualized memory table 623 to determine
the physical location of the virtualized address (101 in this
example) associated with (other) write request. Consulting
virtualized memory table 623, it can be seen that virtualized
address 101 is in memory bank B. Next, at stage 535, the
system determines if this location causes a memory bank
conflict with the read operation. If the write had been to a
memory location in a different memory bank (such as
address 200 in bank D) then the write operation could simply
be performed using that location at stage 540 thus complet-
ing both memory operations. This operation could be per-
formed in parallel with the previous memory operation.
However, in this example, the write is to virtualized address
101 that is in memory bank B thus causing a memory bank
conflict with the memory operation that used virtualized
address 103 which is also located in memory bank B.

To prevent the memory bank conflict between addresses
101 and 103, the system proceeds to stage 550 where the
virtualized memory system controller 621 consults the “e”
column of the 01 row in the virtualized memory table 623 to
determine the physical location of an available memory
bank to write the data for virtualized address 101. Row 01
of column “e” in virtualized memory table 623 specifies
memory bank E as being available memory bank for accept-
ing data into the 01 row. Thus, the virtualized memory
system controller 621 writes the data from the write request
targeted at virtualized address 101 into row 01 of memory
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bank E. (The actual data value is not shown in FIG. 6A or
6B since the actual data value does not matter for this
discussion.)

Since the physical location of virtualized memory address
101 has moved, the virtualized memory table 623 must be
updated to reflect the new physical location of virtualized
address 101. Thus at stage 560, the virtualized memory
system controller 621 writes “E” into row 01 of the 1 column
in the virtualized memory table 623. This signifies that
virtualized address 101 is now located in memory bank E.

If the particular memory system implementation uses a
‘free bank’ column then the new free memory bank associ-
ated with the 01 row must also be updated in that free bank
column. Therefore, at stage 570, the virtualized memory
system controller 621 writes “B” into the “e” column of row
01 in the virtualized memory table 623. Note that in imple-
mentations where the free memory bank is inferred by the
memory bank not listed in that particular row, this stage does
not need to be performed. At this point, both the memory
operation (read or write) using address 103 and the write
operation to address 101 have been performed without
stalling due to a memory bank conflict.

A second example of a simultaneous read operation and
write operation is provided with reference to FIGS. 6C and
6D. FIG. 6C uses the state of FIG. 6B as a starting point and
then simultaneously receives a write to virtualized address
201 and a read from virtualized address 204. To perform the
read of virtualized address 204, the memory controller 621
first determines the location of virtualized address 204 in the
physical memory. Thus, the memory controller first reads
out the entry at column 2 of row 04 in virtualized address
table 623 which specifies that virtualized address 204 is
currently located in memory bank C. Thus, the memory
controller 621 reads the data for virtualized address 204 out
of the 04 row of memory bank C to handle the read request.

To handle the write to virtualized address 201 which was
previously in the 01 row of column C thus causing a memory
bank conflict with the read from row 04 of memory bank C,
the memory controller 621 reads the entry from the “e”
column in row 01 of virtualized address table Q23 to
determine that the free memory bank for row 01 is memory
bank B. Thus, the data associated with the write to location
201 is placed in row 01 of physical memory bank B as
depicted in FIG. 6D. The memory controller 621 then
updates table 623 to reflect the new location of virtual
address 201 (by writing “B” in entry at row 01 of column 2)
and the location of the new free memory location for row 01
(by writing a “C” in the entry at “¢” column of row 01. The
final state after the read from address 204 and the write to
address 201 is illustrated in FIG. 6D.

As can be seen from the above two examples, the virtu-
alized memory system will always have at least two loca-
tions where it can perform a write for any virtualized
address: the current location of that virtualized address or
the memory bank for that row designated as empty. If an
incoming write does not cause a memory bank conflict with
another simultaneous memory operation (read or write),
then the virtualized memory controller 621 may store the
data in its current location. However, if there is a memory
bank conflict caused by a write and one other memory
operation to the same memory bank, then the virtualized
memory controller 621 will write the data to a memory bank
having an empty location for that row and update the new
location of that virtualized memory address in the virtual-
ized memory table 623. In the implementation depicted, the
lowest two digits of the virtualized address space location
will always designate the row in the physical memory space.
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However, in a real digital implementation, a subset of bits
from the virtualized memory address may be used (such as
a set of least significant bits of the virtualized memory
address).

The memory systems disclosed with reference to FIGS.
6A to 6F operates using extra memory banks added to a
memory system. However, similar results may be achieved
by adding extra memory to the memory system in different
forms. For example, instead of using an extra memory bank,
a cache memory system may be added to the memory
controller 621 portion of the memory system. The Provi-
sional Patent Application entitled “SYSTEM AND
METHOD FOR REDUCED LATENCY CACHING” filed
on Dec. 15, 2009 having Ser. No. 61/284,260 discloses a
method of using a cache memory to achieve a similar result
and is hereby incorporated by reference.

Algorithmic Memory System 2: Additional Memory to
Obtain Even Greater Write Performance (1R and nWs) or
(nWs)

The preceding section disclosed an algorithmic memory
block that allowed for two simultaneous write operations or,
alternatively, one read operation and one write operation
simultaneously. That algorithmic memory block achieved
that result by adding extra memory that is used when a write
operation conflicted with another memory operation (either
a read or a write). A memory mapping table was then used
to keep track of the new location of the data. This technique
can be expanded to handle many additional concurrent write
operations by adding additional memory to handle each
additional write operation. Again, although this technique
will be described with reference to an implementation that
uses additional memory banks that operate like the other
memory banks, a memory system that handles several
simultaneous write operations can also be implemented
using a cache memory within the memory controller. For
example, the memory system disclosed in the provisional
patent application “SYSTEM AND METHOD FOR
REDUCED LATENCY CACHING” filed on Dec. 15, 2009
having Ser. No. 61/284,260 could be modified to include
additional caches to handle additional write operations.

To construct a memory system that handles many addi-
tional concurrent write operations, one additional memory
bank must be added to the memory system for each addi-
tional write operation after a first memory operation (which
may be a read or a write operation). For example, if a system
needs to handle four concurrent write operations then the
system needs a main set of memory banks and then three
additional memory banks to handle the additional write
operations. The first write operation is handled by the main
memory bank and the remainder of the write operations are
either handled by the main memory (when there is no
conflict with another write operation) or one of the addi-
tional extra memory banks (when there is a conflict with
another write operation). Similarly, if a system needs to hand
one read operation and two write operations then the system
will require a main memory bank and two additional
memory banks. The read operation is handled by the main
memory bank and the write operations are either handled by
the main memory (when there is no conflict with the read
operation) or one of the additional extra memory banks
(when there is a conflict with the read or another write
operation).

FIGS. 6E and 6F illustrate the operation of an example
algorithmic memory block that has three additional memory
banks labelled E1, E2, and E3. By having three extra
memory banks, the algorithmic memory block can simulta-
neously handle a first memory operation (a read operation or
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a write operation) and three additional write operations. An
example of the operation of the algorithmic memory block
is set forth with reference to FIGS. 6E and 6F.

In FIG. 6E, the algorithmic memory block is an initial
state wherein all of the externally addressable memory
locations are currently located in the main memory banks A,
B, C, and D. The algorithmic memory block also includes
three additional memory banks E1, E2, and E3 for handing
write operations that may conflict with a first memory
operation. The algorithmic memory block then receives four
memory operations: a first memory operation (that may be
a read or a write) addressing location 201 and three addi-
tional write operations to addresses 299, 204, and 200.

If a read operation is received, that read operation can
only be handled by the memory bank that currently stores
the data for the address specified in the read operation. Write
operations can be handled by the current location for the
specified address or in any free memory bank. In FIG. 6E,
the first operation (a read or write) directed toward address
201 is handled by the memory bank that currently stores the
data for address 201 (memory bank B in this example). The
remaining write operations cannot access memory bank B.

In the example of FIG. 6E, all of the operations are
directed toward addresses located in memory bank B. Thus,
the additional write operations must be handled by other
memory banks. In this example, the write to address 299 is
handled with memory bank E1, the write to address 204 is
handled with memory bank E2, and the write to address to
address 200 is handled with memory bank E3. The result
after handling all of the memory operations is illustrated in
FIG. 6F.

Algorithmic Memory System 3: Duplicated Memory
Banks to Obtain nxRead Performance (nR or 1W)

The algorithmic memory blocks disclosed in the previous
sections were able to handle additional write operations by
writing an empty physical memory location and then chang-
ing a mapping table to associate the virtual address in write
operation with the physical address used to store the data.
However, that type of algorithmic memory block was unable
to support more than a single read operation. Two read
operations could not be supported since if two simultaneous
read operations were directed to the same memory bank, a
memory bank conflict would prevent the memory controller
from reading and return both data values without stalling.

To handle two simultaneous read operations, a simple
algorithmic memory block may store two copies of every
piece of data stored in the memory block. Specifically, the
entire memory array could be duplicated. FIG. 7 illustrates
a block diagram of a memory system wherein there is a first
memory array 704 and a second memory array 705. Each
memory bank is the same size and can be accessed inde-
pendently.

When the memory system 700 of FIG. 7 receives two read
operations for data that would be stored in the same memory
bank then the first read operation can access the first memory
array 704 and the second read operation would access the
second memory array 705. This method of implementing a
multiple read memory system can obviously be extended to
handle many read operations by creating many additional
copies of the entire memory array.

However, without any other extensions, this duplicate
memory system could only handle a single write operation
at a time. Each write operation must write to all the memory
arrays (both arrays 704 and 705 in FIG. 7) to keep all of the
data current.

This method of implementing a memory system capable
of handling multiple simultaneous reads is well-known and
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may be implemented with many variations. However, this
method is certainly not elegant. Such a full duplicate
memory system would have a very low memory density
since a full copy of the entire memory array is required for
each additional simultaneous read operation to be handled.
Thus, it would be desirable to have alternative solutions for
handling simultaneous read operations.

Algorithmic Memory System 4: An Additional memory
Bank to Obtain 2x Read Performance (2R or 1W)

Instead of providing two full independent representations
of every piece of data, this section discloses an algorithmic
memory block that instead stores one full representation of
each data item and one encoded version of each data item.
The full representation of a data value is stored in a
consistent location in a main memory bank. The encoded
version of the data value is implemented in a manner that
efficiently combines multiple data items such that only a
small amount of additional memory is required to store the
encoded versions of data.

When such a memory system receives two simultaneous
read operations requesting data that have their full repre-
sentations in the same memory bank then the memory
controller may retrieve the full representation of the first
data item from the main memory bank and retrieve the
second data item by decoding the encoded version of the
second data item. To operate properly, the memory system
must always be able to fetch the encoded version of the
second data item without the use of the main memory bank
that is being accessed to retrieve the first data item.

Since this algorithmic memory block always requires a
main full representation of each data item in a consistent
main memory bank location, the algorithmic memory block
will not be able to handle two write operations concurrently.
Specifically, if two write operations are directed to memory
addresses with full representations stored in the same
memory bank then the two write operations will not be able
to simultaneously access that main memory bank. The
memory system would stall in order to execute a first write
in a first cycle and a second write in a second cycle. Thus,
such a memory system cannot handle two write operations
simultaneously.

In one embodiment, the encoded version of each data item
is stored in an extra memory bank added to a multi-bank
memory system. For example, each row of the extra memory
bank may store an encoded value that is function which
combines all of the data items from the corresponding rows
of all the normal memory banks. To retrieve a single specific
data item from the encoded version, the memory system
reads the encoded version and processes that encoded ver-
sion with a decode function that extracts a single specific
requested data item.

In one particular implementation, all of the data items
from the corresponding row in the main memory banks are
combined together with a logical exclusive-OR function
(commonly known as an ‘XOR’ function) and stored in the
extra memory bank. This extra memory bank is sometimes
referred to as the “XOR bank™ since it stores a logical XOR
combination of all the other data items. To reverse the XOR
function encoding in order to obtain a desired data item from
a particular memory bank, the XOR encoded data value
from one row of the XOR bank is combined (using an XOR
function) with the all the data items from the same row of all
the other main memory banks except for the main memory
bank containing the desired data item. This operation will
eliminate the data items from other memory banks that were
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also encoded in the same row of the XOR bank using the
exclusive-OR (XOR) function thereby leaving only the
desired data item.

Although the disclosed embodiment operates using an
XOR function, there is a general class of “erasure codes”
that may be used to allow multiple data reads. Erasure codes
encode a set of N data bits into a larger set of N+X bits that
allow a system to recover a subset of the N data bits if that
subset of data bits becomes unavailable (usually due to
being lost or corrupted). Such erasure codes are commonly
used in encoding data for transmission across an unreliable
channel. In the disclosed memory system, a set of data bits
from the same row of the memory banks can be viewed as
the original N data bits and the X data bits are the data stored
in the extra memory bank using the erasure code. Thus,
when a subset of the N data bits become unavailable (a
memory bank containing a subset of the N bits is being
accessed for a simultaneous read operation), that subset of
data bits can be reconstructed using X data bits in the extra
memory bank and the remaining data bits from the set of N
data bits. In this manner, any erasure coding system that
allows the quick full reconstruction of data bits from an
unavailable memory bank (a memory bank blocked due to
another memory access to that memory bank) may be used
to encode the data in the extra memory bank.

Examples of erasure coding systems that may be used
include Reed-Solomon coding, Maximum Distance Sepa-
rable (MDS) codes, and Galois Fields. Some coding systems
that do not guarantee the exact same data to be recovered or
take too long to return a result would not be used. There may
be several different encoding systems that can be used which
each have properties. Some codes may require more layout
area but provide faster results. The encoding system for a
particular application should guarantee that data can be
recovered within a prescribed maximum time period and use
minimal resources.

FIG. 8 illustrates a block diagram of an algorithmic
memory block 800 that allows two read operations to be
handled simultaneously using an extra memory bank with
erasure coding. The algorithmic memory block 800 stores a
first (full) data representation in the main memory bank 804
and a second (encoded) data representation in an XOR
memory bank 830. Note that in the illustration of FIG. 8 the
XOR memory bank 830 is only illustrated wider in order to
fit the notation in the illustration. In an actual implementa-
tion, the XOR memory bank 830 would be physically the
same as the other memory banks in the memory system
(Bank 0, Bank 1, Bank 2, and Bank 3).

As illustrated in FIG. 8, the algorithmic memory block
800 stores a full representation of data items using addresses
000 to 399 in the set of main memory banks 804. In the
example of FIG. 8, each main memory bank (Bank 0 to Bank
3) is labeled with a number that is the same as the most
significant digit of the memory addresses stored within that
memory bank. (In FIG. 8, bank 0 is associated with
addresses having ‘0’ as the most significant digit, bank 1 is
associated with addresses having ‘1” as the most significant
digit, and so on.) The full data representation for each item
of data is stored within the appropriate location in the main
memory bank 804. Note that the XOR-based algorithmic
memory block 800 does not require a any virtual to physical
memory mapping table in the memory controller 821 to keep
track of where each piece of data currently resides.

In addition to storing the full representation in the main
memory banks 804, the memory controller 821 also stores a
second (encoded) representation of data items in the XOR
memory bank 830. In each row of the XOR memory bank
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830, the memory controller 821 stores an exclusive-OR
(XOR) encoded version of all the data that has been written
into the corresponding row of all the main memory banks
(banks 0 to 3). For example, as illustrated in FIG. 8, row 00
of the XOR memory bank 830 stores an exclusive-OR
(XOR) combination of the data items from row 00 of
memory banks 0, 1, 2, and 3. This is depicted in FIG. 8 as
having row 00 of XOR memory bank 830 store the logical
function of XOR(000,100,200,300).

In the XOR-based algorithmic memory block 800 of FIG.
8, all data write operations will store information into both
a row of one of the main memory banks 804 and the
corresponding row of the XOR bank 830. The storing of the
full representation of data into a bank of the main memory
804 is a normal write operation that uses the address
specified in the write operation. The storing of the encoded
representation into the corresponding row in the XOR bank
830 must first create a new encoded value by encoding the
new data value with existing data (either data from the other
memory banks or the current encoded value in the XOR
bank 830) and then store that new encoded value into XOR
bank 830. Different methods may be used to create the new
encoded value to be stored into the corresponding row in the
XOR bank 830.

In the embodiment of FIG. 8, the system has N main
memory banks for storing full representations of data and
one XOR bank 830 for storing an encoded version. One
method of creating new encoded value to store into the
corresponding location in the XOR bank 830 is to create an
entirely new encoded value that does not use the existing
encoded value already stored within the XOR bank 830. For
example, the memory controller 821 could read all the data
currently stored in the same row of other memory banks,
combine those existing data values together with the new
data value from the write operation using an XOR operation,
and then write the newly encoded value into the XOR bank
830. Such an implementation would access every memory
bank on each write operation. To implement that method, the
memory controller 821 would write the new data value into
the target memory bank designated by the write address
while simultaneously updating the corresponding XOR bank
830 entry with a new XOR encoded value. Specifically, the
memory controller 821 would read the corresponding row of
all the other memory banks to obtain their current data
values, combine those data values from the other memory
banks with the new data value using an XOR function to
create a new XOR encoded value, and then write that new
XOR encoded value into the XOR bank 830.

In summary, to write a new data value into the memory
system, the system may write the new data value into one of
the N main memory banks, read N-1 data values (from the
other memory banks), and then write one encoded data value
into the XOR bank. This method allows the system to be
constructed with simple single port memory cells since there
is only a single memory operation performed on each
memory location. Specifically, there is a single write to the
addressed memory row of the addressed memory bank, there
is a single read from the corresponding row of all the other
main memory banks, and there is a single write to the
corresponding row of the XOR bank 830 to write the new
encoded XOR value.

Examples of the operation of the XOR based algorithmic
memory block of FIG. 8 are set forth with reference to FIGS.
9A to 9D. FIGS. 9A and 9B illustrate how the memory
system stores a single new data value into the XOR based
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algorithmic memory block. FIGS. 9C and 9D illustrate how
the memory system may simultaneously respond to two
different read operations.

FIG. 9A illustrates an XOR based memory system that has
received a single write request to store data into address 302.
To complete the write request, the memory controller 921
must write the data value associated with the write request
into address 302 in the main memory banks and must write
an encoded XOR version into the XOR Bank 930. In the
example presented in FIGS. 9A and 9B, the memory con-
troller 921 will create the encoded XOR version for the XOR
Bank 930 without reference to the currently existing
encoded XOR version for the XOR Bank 930.

To respond to the write request, the memory controller
921 reads data values 002, 102, and 202 (in memory banks
0, 1, and 2 respectively) to obtain the other data values in the
same 02 row as address 302. The data value for the write
operation may simultaneously be stored into address 302. In
FIG. 9A, the reads of data from addresses 002, 102, and 202
are depicted with italics and the write of the new data into
address 302 is illustrated with underlining.

The memory controller 921 must then update the encoded
XOR value for the XOR Bank 930. The memory controller
921 combines the new data value for address 302 with the
data just read from addresses 002, 102, and 202 using an
XOR operation (illustrated symbolically as “@”) to generate
anew encoded XOR representation as illustrated in FIG. 9A.
The newly encoded version is stored into the corresponding
row (row 02) of the XOR Bank 930. The final state after
processing the write request address to location 302 is
illustrated in FIG. 9B.

The primary advantage of the XOR-based algorithmic
memory block 800 of FIG. 8 is the ability to handle two
simultaneous read operations. An example of concurrently
reading of two pieces of data from addresses that reside in
the same main memory bank is presented with reference to
FIGS. 9C and 9D. In FIG. 9C, an XOR-based algorithmic
memory block receives simultaneous read operations for
addresses 103 and 101 that are both located in memory block
1. Since both addresses are located in the same memory
block, this causes a potential memory bank conflict. (Note
that if the addresses from the two concurrent read operations
targeted addresses in two different memory banks, the two
read operations could easily be handled by the two different
independent memory banks concurrently since no memory
bank conflict occurs.) To handle both read operations with-
out a memory bank conflict, one read request will be
serviced using the main representation in memory bank 1
and the other read request will be serviced using the encoded
XOR representation in the corresponding row of XOR bank
830 (with the help of data read from the corresponding row
of memory banks 0, 2, and 3).

Referring to FIG. 9C, the memory controller 921 reads
five different data values to handle the two simultaneous
read requests. Specifically, the memory controller 921 reads
from:

1) Address 103 from row 03 of main memory bank 1;

2) Address 001 from the 01 row of main memory bank 0;

3) Address 201 from the 01 row of main memory bank 2;

4) Address 301 from the 01 row of main memory bank 3;
and

5) The encoded XOR value from row 01 in the XOR bank
930

Note that all five of these read operations all access
different memory banks such that there is no memory bank
conflict between any of these read operations. Furthermore,
note that every memory bank in the memory system is
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accessed such that the technique of this XOR-based algo-
rithmic memory block may consume more power than
techniques used by other types of algorithmic memory
blocks. However, the system will only need to read from
every memory bank when there is a memory bank conflict
between the two requested addresses. If the read requests
were directed toward data in two different memory banks,
then the memory controller 921 would only read from those
two different memory banks.

FIG. 9D illustrates how the memory controller 921 then
responds with the two requested data values using the data
from these five read operations. The memory controller 921
responds with the data read from address 103 to handle the
read operation for address 103. To handle the read operation
for address 103, the memory controller 921 performs an
XOR operation combining the encoded XOR value from
row 01 in the XOR bank 930 with the data read from
addresses 001, 201, and 301 from row 01 in the main
memory banks. This removes the effect of those data values
from the encoded XOR value in row 01 the XOR bank 930
thereby leaving only the data value from address 101. Thus,
FIG. 9D illustrates the memory controller 921 responding
with the data values for addresses 103 and 101.

One nice feature of the XOR-based algorithmic memory
block is that no mapping table is required within the memory
controller. This eliminates the need for mapping table
memory and sophisticated control logic required read the
mapping table and to update the mapping table as necessary.
However, the XOR-based algorithmic memory block is not
ideal for wide data values since parallel data paths must be
routed from all of the different memory banks (including the
XOR bank) back to the memory controller in order to
implement the XOR-based algorithmic memory block.

Algorithmic Memory System 5: Alternative XOR Bank
Implementations to Obtain 2x Performance (2R or 1W), (2R
or AW) and (IR and 1W)

The algorithmic memory block of FIG. 8 allows two read
operations to be handled simultaneously. FIG. 9A to 9D
illustrated one particular method of implementing such an
algorithmic memory block. However, many variations of the
algorithmic memory block of FIG. 8 may be implemented
that each provide different features. This section discloses
several variations of the algorithmic memory block of FIG.
8 that can handle two different read operations simultane-
ously.

Referring back to FIGS. 9C and 9D, the memory con-
troller 921 had to read the entire 01 row of the memory bank
(with the exception of address 101 that could not be read due
a memory bank conflict) in order to respond to the read
request for address 101. Using the XOR function allowed
the data value for address 101 to be decoded from the XOR
bank 930. Since the other data in the same 01 row is already
being read, the system of FIGS. 9C and 9D may be used to
implement an algorithmic memory block that implements a
“row read” that provides the data from an entire data row in
the main memory bank. Such an algorithmic memory block
could respond to both a normal read request and a row read
request simultaneously. FIGS. 9E and 9F illustrate a
memory system that implements the row read feature.

As illustrated in FIG. 9E, the memory system receives a
read request for address 103 and a row read request for the
entire memory row 01 (address 001, 101, 201, and 301). The
memory controller 921 reads the data value for address 103
read directly out of the main memory bank. The memory
controller 921 also reads the entire row 01 of the memory
system with the exception of location 101 since reading
address 101 would conflict with the reading of address 103
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since both are stored in bank 1. Then, in FIG. 9F, the
memory controller 921 outputs the data read from addresses
103, 001, 201, and 301 from the direct read operations and
the data from address 101 as decoded from the row 01 XOR
bank entry in the same manner as set forth in FIG. 9D.

As described in FIGS. 9A and 9B, the use of erasure codes
increases the speed of reads from memory; however this had
a consequence on write performance. FIGS. 9A and 9B
illustrated one possible method of encoding the second
representation of data (the XOR bank entry) that must read
all of the other data in the same row before adding a new
data item to the second representation (the XOR bank entry).
In what follows, a different method to create a new or second
representation of a data item is described. For example, one
implementation may read the existing second representation
(the XOR bank entry), update that second representation
with new data item, and then write-back the newly updated
second representation.

Referring to FIG. 8, the memory controller 821 may
perform this method by first reading both the current data
value from the target address in the main memory bank 804
of a write request and the current encoded value stored
within the corresponding row of the XOR bank 830. Next,
the memory controller 821 removes the representation of
that current data from the encoded version of the XOR bank
830 by XORing that current data value with the current
encoded value from the XOR bank 830. After the old data
has been removed from the encoded value, the memory
controller 821 then creates a new encoded XOR value by
XORing the new data value with the encoded value that has
had the old data removed. Finally, the memory controller
821 may then write the new data value into the target address
in the main memory bank and write the newly encoded XOR
value into corresponding row of the XOR bank 830.

To store a new data item in this manner, the memory
system must perform the following four memory operations:
(1) read an old data value from one of the N main memory
banks, (2) write a new data value into that main memory
bank, (3) read the old encoded value from the XOR bank,
and (4) write a new encoded data value back into the XOR
bank. In order to perform all of these memory operations in
a single cycle, both the main memory banks 804 and the
XOR bank 830 must be implemented with two-port memory
(one read port and one write port). The main memory banks
must be two-port memory such that the target address in the
main memory bank 804 can be read from (to obtain the old
data value that must be removed from the existing encoded
value in the XOR bank 830) and written to (to store the new
data value) within a single cycle. Similarly, the XOR bank
830 must be implemented with two port memory so it can be
read from (to obtain the existing encoded XOR data value)
and written to (to write the updated encoded XOR value)
within a single cycle. The use of two-port memory for both
the main memory banks 804 and the XOR bank 830 in this
method may make this method more costly to implement.
However, some memory cell circuit designs are able to
implement two-port memory cells with only a small increase
in cost.

FIGS. 9G and 9H illustrate the alternate method of
updating the second representation of data using the existing
representation. In the example of FIGS. 9G and 9H, the
current encoded XOR representation stored in the XOR
Bank 930 is used to generate a new encoded XOR repre-
sentation that is written back into XOR Bank 930. Referring
to FIG. 9G, the memory system receives a write to address
312. As illustrated by italics in FIG. 9G, memory controller
921 responds to the write to address 302 by reading the
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existing data value in address 302 and reading the 02 row
entry of the XOR Bank 930 that contains the function
XOR(002,102,202,302). This data will be used to create the
new encoded XOR value for the row 02 entry the XOR bank
930.

Next, as illustrated in FIG. 9H, the memory controller 921
then generates a new encoded value for the row by XORing
the old data value of address 302 with the current encoded
value (in order to remove the old data associated with
address 302) and also the new data value being written to
address 302 (in order to add the new data for address 302
into the encoded XOR value). Finally, the memory control-
ler 921 writes the new data value into address location 302
and writes the newly created encoded XOR value for the row
02 entry of the XOR bank 930. The final state after the write
to address location 302 is illustrated in FIG. 9H.

In the write operation disclosed in FIGS. 9G and 9H, there
were four internal memory accesses (two read operations
and two write operations) to handle a single write request
received. The number of memory accesses is independent of
the number of banks used in the memory sub-system. In the
write operation disclosed FIGS. 9A and 9B, the system used
five memory accesses (three read operations and two write
operations). The number of memory read accesses is depen-
dent on the number of banks used in the memory sub-
system, and in implementations with greater numbers of
memory banks, the system of FIGS. 9A and 9B will use even
more memory accesses since the corresponding row in every
memory bank must be read to create the updated second
representation. Thus, the second method of handling write
operations as disclosed in FIGS. 9G and 9H consumes less
power than the original method of handling write operations
as disclosed in FIGS. 9A and 9B.

The example of FIGS. 9G and 9H operates in a single
memory cycle by using two-port memory cells. For systems
that must handle a write operation in every cycle, this type
of implementation will work but may be costly due to the
two-port memory that must be implemented in both the main
memory bank and the XOR bank 930. However, if an
application does not need to be able to handle a new write
operation every cycle then the system may be allowed to use
less expensive single port memory. For example, a memory
system may use two cycles to complete each write request
while using only one cycle to handle two simultaneous read
requests. Such a memory system may be referred to as a
two-read or half-write (2R or AW) algorithmic memory
block two read operations can be handled in a single cycle
but only half of a write operation can be handled in a single
write cycle. (Two memory cycles would be required to
compete a full write operation.)

FIGS. 91 and 9] illustrates how such a two-read or
half-write algorithmic memory block may handle a write
operation into address 302. FIG. 91 illustrates a first memory
cycle wherein the memory controller 921 reads the existing
data value from address 302 and the existing encoded XOR
representation from the XOR bank 930, FIG. 9] illustrates a
second memory cycle wherein the memory controller 921
writes the new data value into address 302 and writes an
updated encoded XOR representation into the 02 row entry
of the XOR bank 930.

In the memory systems disclosed in FIGS. 9G to 9H, the
memory controller 921 accessed only a single memory bank
from the set of main memory banks when writing a new data
value into the memory system. Specifically, the system
disclosed with reference to FIGS. 9G to 9H only accessed
the target memory location (address 302 in the examples) in
the main memory bank. Since the other main memory banks
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were not touched, a read operation could be added such that
a memory system that supports one read and one write
operation per cycle (in addition to alternatively supporting
two read operations per cycle) may be constructed. How-
ever, this embodiment requires a three port memory to
implement the XOR bank.

FIGS. 9K and 9L illustrate an XOR-based algorithmic
memory block that handles one write operation and one read
operation. As illustrated in FIG. 91, the memory controller
921 receives a write to address 302 and a read from address
304. To handle the write operation, the memory controller
921 must first access address 302 and the 02 row entry XOR
bank 930. The memory controller 921 first reads original
data value in address 302 (the data value in address 302
before this write request was received) and then may write
the new data into address 302. The memory controller 921
then combines the original data value from address 302 with
the 02 row entry XOR bank 930 to remove the original
address 302 data. Finally, the memory controller 921 XORs
in the new data value from the write operation and then
writes the result back into the 02 row entry XOR bank 930.

To simultaneously handle the request to read address 304,
the memory controller 921 cannot directly access memory
bank 3 since the write to address 302 is already using
memory bank 3. Instead, the memory controller 921 reads
the 04 row entries from the other memory banks (addresses
004, 104, and 204) and the row 04 entry in the XOR bank
930 that contains XOR(004,104,204,304). Note that this
reading of the 04 entry in the XOR bank 930 is occurring
while the row 02 entry from the XOR Bank 930 is also being
read such that more than one row of the XOR Bank 930 must
be independently accessible during the same clock cycle.
Thus, the XOR Bank 930 needs to be implemented with
three port memory as depicted. The memory controller 921
then XORs together the data values from addresses 004,
104, and 204 with the XOR(004,104,204,304) entry from
the XOR Bank 930 to retrieve the data value from address
304.

Algorithmic Memory System 6: Additional XOR Banks
to Obtain NxRead Performance (NR or 1W)

The XOR-based algorithmic memory block disclosed in
the previous sections may be expanded to handle more than
just two simultaneous read operations. The technique of
expanding the XOR-based algorithmic memory block
involves adding additional XOR memory banks that cover
the main memory banks with various different disjoint sets.
In this manner, the multiple-read XOR-based algorithmic
memory block will respond to multiple read operations to
the same memory bank with one data value directly read
from the addressed memory bank and multiple other data
values created by combining data values read from the other
memory banks with XOR memory banks.

FIG. 10 illustrates a conceptual diagram of a XOR-based
algorithmic memory block 1000 designed to handle four
simultaneous read operations. The XOR-based algorithmic
memory block 1000 has a main memory bank set 1004 that
includes sixteen independent memory banks labelled B01 to
B16. Each of the memory banks B01 to B16 can be
independently accessed simultaneously.

The XOR-based algorithmic memory block 1000 also
includes a set of XOR memory banks 1030. Each memory
bank in the main memory bank set 1004 is represented
within three of the XOR memory banks 1030 such that data
within each memory bank can be accessed four different
ways: a direct read to the memory bank within the main
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memory bank set 1004 and an XOR decoding of the three
different XOR memory banks that contain an alternate
representation of the data.

Only one data item can be written into the XOR-based
algorithmic memory block 1000 at a time. The writing of a
new data item requires writing the new data value into the
target address of main memory bank for that item (one of the
memory banks 01 to 16 in main memory bank set 1004) and
updating the three XOR memory banks within the XOR
memory banks 1030 that also contain a representation of the
new data item. The methods that may be used to write a data
item into the XOR-based algorithmic memory block 1000
are the same as the methods disclosed in the previous two
sections of this document.

FIGS. 11A to 11E illustrate how four data items located in
the same memory bank (bank B11 in this example) may be
read simultaneously by accessing one main data represen-
tation within bank B11 and three encoded data representa-
tions from XOR banks 1030. Initially, the XOR-based
algorithmic memory block receives a request for four data
items that all reside within main memory bank B11. The four
addresses within memory bank B11 may be designated
B11.A, B11.B, B11.C, and B11.D wherein the postfix letter
specifies an address within memory bank B11. Note that all
of the memory banks are of the same size and may be
addressed internally with the same A, B, C, etc. style
addressing. A first requested data item, B11.A, may be read
directly from the B11 memory bank as illustrated in FIG.
11A. The other three data items (B11.B, B11.C, and B11.D)
cannot be read directly from memory bank B11 since this
would cause a memory bank conflict.

FIG. 11B illustrates how a second data item, B11.B, may
be accessed by using a first XOR bank 1132 that contains an
encoded representation of the B11 memory bank and thus
contains a representation of the data at address B11.B. The
requested B data address from XOR bank 1132 is XORed
with the data from the corresponding B address location in
the other memory banks represented by the XOR bank 1132.
In this example, the B address location from a first XOR
bank 1132 containing a combination of entries from the B09,
B10, B11, and B12 memory banks is combined with data
items retrieved from the corresponding B address memory
location in main memory banks B09, B10, and B12 in order
to extract requested data item B11.B.

FIG. 11C illustrates how a third data item, B11.C, may be
accessed by using a second XOR bank 1133 that also
contains a representation of the B11 memory bank and thus
contains the requested data at address B11.C. In addition to
the data from the desired B11 bank, the second XOR bank
1133 contains a representation of data from other memory
banks (banks B03, B07, and B15). Note that these data
banks are all different than the data banks represented in the
first XOR bank 1133 (which had banks B09, B10, and B12)
such that the corresponding other memory banks (banks
B03, B07, and B15) can be accessed without a memory bank
conflict. In this example, a C address from a second XOR
bank 1133 containing a combination of entries from the B03,
B07, B11, and B15 memory banks is combined with data
items retrieved from the corresponding C address in main
memory banks B03, B07, and B15 to reconstruct the desired
data item B11.C.

FIG. 11D illustrates all of the memory banks that have
been accessed to obtain the first three data items (B11.A,
B11.B, and B11.C). Specifically, FIG. 11D illustrates all of
the memory banks that were read in the memory reads
disclosed with reference to FIG. 11A, FIG. 11B, and FIG.
11C. As illustrated in FIG. 11D, the only memory bank that
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contains a representation of data from the B11 bank and has
not been read yet is XOR bank 1134 in the lower right
corner. XOR bank 1134 contains an XOR combination of all
the data values in all of the main memory banks B01 to B16.

To retrieve the last requested data value (the data from
address B11.D), the memory system will XOR together the
D memory address from all of the memory banks not yet
accessed as illustrated in FIG. 11E. To illustrate why this
works, consider the horizontal row of memory banks 1139.
With reference to FIG. 11B, the data values at address B in
memory banks B09, B10, and B12 were combined with the
value at address B in XOR bank 1132 to obtain the desired
data value B11.B. (B11=XOR(B09, B10, B12, XOR bank
1132) If those same memory banks could be read again, the
final B11.D data value could be obtained in the same
manner. Although those memory banks cannot be read again
(due to memory bank conflict), the desired contents from
those memory banks can be reconstructed using memory
banks that have not been read yet. The following equations
illustrate how data values from all the other memory banks
in the same row as B11 may be reconstructed:

B09=XOR (B01, B05, B13, XOR bank 1135)

B10=XOR (B02, B06, B14, XOR bank 1136)

B12=XOR (B04, B08, B16, XOR bank 1137)

XOR bank 1132=XOR (XOR bank 1151, XOR bank

1152, XOR bank 1153, XOR bank 1134)

Thus, when data values from those four memory banks
are combined, the result is the same value from B11. Note
that the previous four equations list all of the memory banks
highlighted in FIG. 11E. Therefore, to reconstruct the B11.D
value, the address D location from all of the memory banks
highlighted in FIG. 11E may be XORed together to obtain
the data from address B11.D.

The example set forth in FIGS. 11A to 11E illustrates the
worst case scenario where all of the read requests are
directed toward the same memory bank (memory bank B11
in this example) thus creating a potential four-way memory
conflict. When the memory requests are spread out among
different memory banks, the system does not have to rely so
much on the XOR banks. For example, FIG. 11C illustrates
how a second data item, B11.C, needed to be accessed using
an XOR bank 1133 and all of the memory banks in a vertical
column with memory bank B11. If the second memory
request had instead been directed to an address B07.C
located in memory bank B07 then XOR bank 1133 would
not be needed to obtain the B07.C value. Specifically, FIG.
11F illustrates how data item B07.C can be read directly out
of memory bank 07 since there is no memory bank conflict
with bank B11. Thus, the decoding of a second representa-
tion as illustrated FIG. 11C.

Algorithmic Memory System 7: An Additional XOR
Bank to obtain 2x Performance (1 Update)

The XOR-bank based methodology disclosed in the pre-
ceding sections can also be used to implement a specialized
“1 Update” memory. An “Update” operation is a special type
of memory operation consisting of a read operation and a
simultaneous write operation wherein the write operation
writes to a memory location that was read from a few
memory cycles earlier. The read operation will be followed
by a corresponding write operation a few cycle later. This is
generally referred to as “read-modify-write” operation
within the field of computer science.

An update type of memory operation is frequently used
when keeping track of statistics or state. For example, a
network router that is handling many different communica-
tion lines, connections, sessions, data packet queues, and
other data abstractions may need to keep track of various
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statistics for each data abstraction. For example, the network
router may keep track of the number of packets serviced, the
number of packets dropped, packet types, the total amount
of data carried for a particular session, etc. Similarly, read-
modify-write operations are also very useful for maintaining
state values such as TCP connection state, policer state, and
other system states. For each of these statistics and state
values maintained, the network router may periodically read
the current value from memory, modify the current value,
and then write the updated statistic or state value back into
memory. If a large number of statistics must be kept track of,
a specialized statistics memory could be used to optimize
such statistic handling.

Since an update operation involves reading a data value
from memory and then writing back an updated data value
to same memory location in the near future, the memory
system may take advantage of the fact that it can expect a
later write operation to be received. For example, after the
memory read stage of an update operation, the memory
controller may carry forward state information from that
memory read operation such that the carried-forward state
information will be available when the later write operation
is received. To optimize the handling of the stored carried-
forward information, the carried-forward information may
be carried along a pipeline in an internal shift register that is
synchronized with the related read and write operations of
the read-modify-write.

Referring back to the XOR-based algorithmic memory
block of FIG. 8, the XOR-based algorithmic memory block
must update both the main representation in the addressed
memory location in the main memory bank area 804 and the
secondary (encoded) representation in the appropriate row in
the XOR bank 830 for each write operation. To update the
XOR bank 830 during a write operation, the memory
controller 821 requires either all the other data values from
the same row of the XOR bank 830 (as disclosed with
reference to FIGS. 9A and 9B) or the contents of the
appropriate row in the XOR bank 830 with the old data value
removed (as disclosed with reference to FIGS. 9G to 9J). In
an update memory system, this additional data needed to
create the encoded representation may be fetched during the
read operation, carried forward in a pipeline or shift register,
and then used when the later write operation is received.

There are a few different cases that must be considered
with an update memory system. Each case will be illustrated
with an example. FIG. 12A illustrates a first case to consider
wherein a read operation and a write-back operation (from
two different update operations a few cycles apart) are being
handled in the same cycle both target the same address. This
is a potential a memory bank conflict since the same address
is obviously within the same memory bank.

To handle the read operation, the memory controller 1221
reads the 02 row of the XOR bank 1230 and the other data
values in the 02 row (addresses 002, 102, and 202) and then
combines those values to retrieve the current data value of
address 302. Specifically, the memory controller 1221 com-
bines XOR(002,102,202,302) with the data values from
addresses 002, 102, and 202 to obtain the requested data
from address 302. This is illustrated in FIG. 12B wherein the
memory controller 1221 calculates the value of XOR(002,
102,202,302)002510265202 to return the data for address
302.

The memory controller 1221 handles the write operation
using state data that has been carried forward from an earlier
read operation to the same address. Specifically, the state
information that is carried forward is the old data value for
the target address and the value of the associated row of the

20

25

40

45

30

XOR bank 1230. Thus, for the example of FIG. 12A wherein
the write is directed to address 302, the memory controller
1221 would carry forward the old data value for address 302
and the 02 row entry of the XOR bank 1230 (which is
XO0R(002,102,202,302)). To create the new entry for the
XOR bank 1230, the memory controller 1221 XORs
together the carried-forward old data value for address 302,
the carried forward XOR(002,102,202,302) value, and the
new data value for address 302 to create a new XOR(002,
102,202,302) value. The memory controller 1221 writes this
newly created XOR(002,102,202,302) value into the 02 row
entry of the XOR bank 1230 as illustrated by line 1228 in
FIG. 12B. The memory controller 1221 also writes new data
value for address 302 directly into the address 302 location
in the main memory bank. Thus, to handle the write into
address 302, the memory controller only needs to perform
two write operations: a write of the primary representation
into the address 302 location and a write of the secondary
(encoded) representation of the address 302 data into the 02
row entry of the XOR bank 1230.

Note that in the example of FIG. 12A, the XOR(002,102,
202,302) value that is carried forward in the pipeline from
the read operation may change before it is used with a
subsequent write operation. For example, between the time
the data value for address 302 was read and the time that a
new data is written into address 302, the data value for
address 102 may have changed. If this occurs, then simply
using the XOR(002,102,202,302) value from when the
original read occurred would result in an outdated value for
address 102 within the XOR(002,102,202,302) value. To
prevent this situation, the pipeline that carries data forward
must propagate changed data values to later pipeline stages
such that the data remains coherent. Thus, when the write
operation changes a data value that is represented in later
pipeline station (such an XOR bank entry being carried
forward), that data value (such as an XOR bank entry) must
be updated to reflect the new data value

There are variations of implementing the data early for-
ward system. For example, in some implementations, the
memory controller may carry forward the data values for all
of the memory bank entries in the same row instead of
carrying forward the XOR bank entry. In the case of the read
operation to address 302 illustrated in FIG. 12A, the
memory controller 1221 could carry forward the data values
for addresses 002, 102, and 202. Then, to create the new 02
row entry for the XOR bank 1230 at the time of the
write-back, the memory controller 1221 would then XOR
together the new data value for address 302 with the
carried-forward data values for addresses 002, 102, and 202.
This is illustrated in FIG. 12B with line 1229. Note that if the
other data values (002, 102, or 202) changed with a write
before the write-back for address 302 occurs then those data
values being carried in the pipeline should also be changed.

FIGS. 12C and 12D illustrates a second case to consider
wherein a read to address 104 and a write-back operation to
address 302 target different addresses in different memory
banks. In the case of FIGS. 12C and 12D, the write to
address 302 is handled in the same manner. Specifically, the
memory controller writes the new data for address 302
directly into address 302 and uses carry-forward data to
create a new row 02 entry for the XOR bank 1230. As
illustrated in FIG. 12D, the row 02 entry for the XOR bank
1230 can be created using a carried forward 02 row XOR
bank entry as illustrated by line 1228 or the row 02 entry for
the XOR bank 1230 can be created using carried-forward
data values from the same memory bank row (data from
addresses 002, 102, and 202) as depicted by line 1229.
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The memory controller 1221 can handle the read from
address 104 by simply reading the data value directly from
address 104 and responding with the data as depicted in FIG.
12D. However, the memory controller 1221 will also access
other information from the 04 row to obtain needed carry-
forward information. In an embodiment that carries the
XOR bank entry value, the memory controller 1221 would
only accesses the row 04 entry of the XOR bank 1230 to
obtain the XOR(004,104,204,304) value. In an embodiment
that carries the data values from the other memory banks
forward, the memory controller 1221 would also read the
004 and 204 data values. The memory controller 1221 would
calculate the data value for address 304 by combining the
XOR(004,104,204,304) value with the data values of
addresses 004, 104, and 204 with an XOR operation.

FIGS. 12E and 12F illustrates a third case wherein a read
to address 301 and a write-back operation to address 302
target different addresses in the same memory bank. In the
case of FIGS. 12E and 12F, the write to address 302 is
handled with the carry-forward state information from the
earlier read operation in the same manner as set forth in the
previous two cases. To handle the read operation, the
memory controller 1221 reads the row 01 entry of the XOR
bank 1230 and the other data values from the 01 row
(addresses 001, 101, and 201). The memory controller 1221
generates the requested address 301 data value by XORing
together the row 01 entry of the XOR bank 1230 with data
values from addresses 001, 101, and 201 as illustrated in
FIG. 12F. The memory controller 1221 then carries the row
01 entry from the XOR bank 1230 and/or the data values
from addresses 001, 101, and 201 for use with the subse-
quent write-back operation.

Algorithmic Memory System 8: An Additional XOR
Bank to Obtain 2x performance (1R and 1W) But Does Not
Allow Overwrites

In the XOR-based algorithmic memory block disclosed in
FIGS. 9K and 9L that was able to handle a simultaneous read
operation and write operation, the memory system used
two-memory cells to read an existing data value from a main
memory bank location before writing in the new data value.
The two-port memory needed in the main memory banks
that would allow such a feature is uses more lay out area and
thus reduces the bit density of the memory system. It would
be desirable to have another method of being able to perform
a simultaneous read and write without requiring two-port
memory. FIG. 13 discloses such an XOR-based algorithmic
memory block that can handle a simultaneous read operation
and write operation using single port memory in the main
memory banks. However, the XOR-based algorithmic
memory block 1300 of FIG. 13 does impose a specific use
restriction on the memory system that must be followed as
will be set forth below.

As illustrated in FIG. 13, a set of addresses 000 to 399 are
stored into a set of main memory banks 1304 wherein each
memory bank is associated with addresses having a particu-
lar digit of the memory address. As with the previous
XOR-based system, the XOR-based algorithmic memory
block 1300 also includes an XOR memory bank 1330 that
stores an exclusive-OR encoded version of all the data that
has been written into the corresponding rows of all the main
memory banks. However, the XOR-based algorithmic
memory block 1300 also includes a new data structure, a
small XOR bank contents table 1333. The XOR bank
contents table 1333 keeps track of which addresses in the
main memory bank area 1304 currently have valid data
represented in the XOR bank 1620. Thus, the XOR bank
contents table 1333 is a memory array that has the same
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number of individually addressable elements as the main
memory banks 1304 but only contains a single bit entry for
each element in the memory array.

To simplify the task of keeping the XOR memory bank
1330 updated, the XOR-based algorithmic memory block
1300 of FIG. 13 imposes a restriction that forbids a user
from writing new data into an address if the memory system
already has valid data stored in that particular memory
address. With this usage restriction, when a new write
operation is received, the memory controller 1321 does not
need to remove the participation of the old data from the
XOR memory bank 1330 when a new write operation is
received since there is no old data in the XOR memory bank
1330 for that address.

To handle a write operation, the memory controller 1321
merely needs to write the new data into the target address in
the main memory array 1304 and update the representation
in the XOR memory bank 1330 with the new data. Since
there not any valid data from that target address currently
represented in the corresponding row entry in the XOR
memory bank 1330, the memory controller 1321 can simply
read the appropriate XOR memory bank entry, XOR in the
new data value, and then write that updated encoded repre-
sentation back into XOR memory bank entry. Note that a
four-port memory is used to implement the XOR bank 1330
since a read and a write to the same memory bank will both
require access to the XOR bank 1330, however the main
memory banks 1304 will not require multi-port memory
circuits.

To allow target addresses to be cleared such that new data
can be written, the XOR-based algorithmic memory block
1300 implements two different types of read operations: A
normal read operation and a read-clear operation. The nor-
mal read operation simple reads the data and provides the
data to the requestor as done in the previous implementa-
tions. The read-clear operation reads the data, provides the
data to the requestor, and then removes the representation of
that data from the XOR bank 1330. To implement such
different read operations, the memory device could use a
signal line to the memory device that specifies if a read
operation is a normal read operation or a read-clear opera-
tion.

The read-clear operation reads the requested data,
removes the representation of that data from the correspond-
ing row of the XOR bank 1330, and then clears the associ-
ated flag in the XOR bank contents table 1333 to indicate
that the XOR bank 1330 no longer contains a representation
of the data for that particular memory address. If the
XOR-based algorithmic memory block 1300 receives a read
operation for a target address that is marked in the XOR
bank contents table 1333 as not containing valid data, then
the memory controller 1321 will indicate a memory fault
since it cannot always provide valid data in such instances.
This case should never happen since if an address is not
represented in the XOR bank 1330 then that address must
have received a “read-clear” operation earlier or never had
valid data stored in it. Thus, a properly designed system
should not be reading from that memory address since the
memory location will only contain a junk value.

When a read request (either normal or read-clear) and a
write request are received which do not cause a memory
bank conflict occurs, then the read request and write opera-
tions can occur simultaneously in the two independent main
memory banks. However, if the read operation is a read-
clear operation, then the read-clear operation and the write
operation will both need to access the XOR bank 1330. As
set forth above, the write operation must always access the



US 9,442,846 B2

33

XOR bank 1330 in order to add the XOR encoded data into
the XOR bank 1330. When the read operation is a read-clear
operation then the read-clear operation will also have to
access the XOR bank 1330 to remove the XOR represen-
tation of the data from the XOR bank 1330. Since both the
read operation and the write operation may need read,
modify, and write the XOR bank 1330; the XOR bank must
support two read operations and two write operations in a
single memory cycle. Thus, the XOR bank 1330 may need
to be a 4-ported memory device.

When a read and write operation both address data values
in the same main memory bank then a potential memory
bank conflict does occur. To handle this, the memory write
operation is given priority to access the memory bank in the
main memory 1304 since it must write the new data into that
address. (This is referred to as an “inverted XOR-operation,
since the read is done indirectly using the rest of the memory
banks and the XOR bank, rather than directly from the
memory bank; even though the memory bank has no read to
read conflicts.) In addition, the write operation must also
update the corresponding location in the XOR bank 1330.

The memory read operation (which cannot access the
same bank in the main memory 1304 that the write operation
is accessing) is handled by retrieving the corresponding
XOR coded version from the XOR bank 1330. Specifically,
the memory controller reads the appropriate row entry from
the XOR bank 1330, reads the data from the corresponding
row in the other memory banks that have valid data encoded
in the entry from the XOR bank 1330, and then decodes the
XOR coded version to obtain the requested data. Note that
the XOR bank contents table 1333 is used to select only
those memory banks that currently have valid data in the
corresponding row of the XOR bank 1330. If this is a normal
read for this memory location, then the corresponding loca-
tion in the XOR bank 1330 may remain unchanged. How-
ever, if this is a read-clear operation, then the memory
controller 1321 must write back an XOR encoded version
that only contains the data from the other memory banks that
still have valid data in that row.

Examples of the operation of this particular XOR-based
algorithmic memory block 1300 are set forth with reference
to FIGS. 14A to 14F. FIG. 14A illustrates the memory
system in an empty initial state. The memory system
depicted in FIG. 14A must receive at least one write opera-
tion before it receives any read operations. FIG. 14A depicts
the memory system receiving first write operation into the
memory system addressed to address location 302. The
memory controller 1421 writes the data into memory loca-
tion 302 in the main memory and XORs the data into the
same row of the XOR bank. Since the XOR bank 1430 was
empty, the 02 row in the XOR bank 1430 will end up
containing the same data that was written to address 302.
The memory controller 1421 then updates the XOR Bank
contents table 1433 to indicate that the 02 row of the XOR
bank 1430 now contains valid data from main memory bank
3 (XOR bank 1430 now contains valid data for address 302).
The final state after the write to address location 302 is
illustrated in FIG. 14B.

FIG. 14C illustrates the memory system with the state
from FIG. 14B receiving a subsequent write to address 102.
The data is written into the 102 location of the main memory
and the XOR bank 1430 is also updated. Specifically, row 02
of the XOR bank 1430 is read, combined with the new data
written to address 102 using an XOR operation, and then
written back into row 02 of XOR bank 1430. The XOR Bank
contents table 1433 is also updated to reflect that row 02 of
the XOR bank 1430 now contains both data from bank 1 and
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bank 3. The final state of the XOR-based algorithmic
memory block after the write to address 102 is illustrated in
FIG. 14D.

The XOR-based algorithmic memory block will continue
to fill up in this manner. FIG. 14E illustrates an example
state of the memory system after more data has been added.
The system of FIG. 14E may then receive a write to address
100 and a read from address 104 simultaneously as illus-
trated. In this inverted XOR system, the write operation is
given priority and the data associated with the write opera-
tion is written into address 100 in the main memory bank (as
indicated by the underlined 100 in the main memory bank).
To update the XOR bank 1430, the memory controller 1421
reads the 00 row from the XOR bank 1430, XORs the data
value written to address 100, and then writes the result back
to the 00 row of the XOR bank 1430. Finally, the XOR bank
contents table 1433 must also be updated. The memory
controller 1421 sets the bit in the XOR bank contents table
1433 to indicate that the row 00 of the XOR bank 1430 now
also contains data from memory bank 1 (address 100 now
has valid data in the XOR bank 1430).

The read from address 104 cannot handled by reading the
data directly from address 104 in the main memory due to
a bank conflict with the write to location 100. So the read
must be handled using the XOR bank 1430 and the other
main memory banks. The memory controller first reads row
04 of the XOR bank contents table 1433 to identify which
main memory banks have data represented in row 04 of the
XOR bank 1430. Row 04 of the XOR bank contents table
1433 specifies that banks 1, 2, and 3 (addresses 104, 204,
and 304) all have data XORed in row 04 of the XOR bank
1730. At this point, if the row 04 entry of the XOR bank
contents table 1433 had indicated that address 104 did not
contain valid data then the memory system should issue a
memory fault response since the requestor is requesting data
from an address that does not contain any valid data. But in
this situation, the XOR bank contents table 1433 indicates
that address 104 does have valid data represented in row 04
of the XOR bank 1730.

To retrieve the data for address 104, the memory control-
ler 1421 reads row 04 of the XOR bank 1430 and the data
values from the other banks (banks 2 and 3) that have data
represented in row 04 of the XOR bank 1430. In this case
banks 2 and 3 have valid data in row 04 of the XOR bank
1430 such that the memory controller 1421 reads the data in
address 204, the data in address 304, and row 04 of XOR
bank 1430. The data values read from these three locations
are XORed together to obtain the original data from address
104 that is used to respond to the read request. If the read
operation was a normal read operation, then the read opera-
tion would be complete at this point.

If the read operation was instead a read-clear operation,
then the memory controller 1421 needs to remove the data
associated with address 104 from the XOR bank 1430. FIG.
14G illustrates the effect of such a read-clear operation. The
memory controller 1421 may perform this by XORing the
data value for address 104 with the original value read from
row 04 of the XOR bank 1430 to remove the data associated
with address 104 and then writing that value back to the
XOR bank 1430. The memory controller 1421 must also
clear the bit in address 104 location in the XOR bank
contents table 1433 to indicate that the data from address
104 is no longer represented in the XOR bank 1430. The
final result after the write to address 100 and a read-clear
operation of FIG. 14E is the state illustrated in FIG. 14G.

As set forth above, the memory controller always
removes data from the XOR bank after a read-clear opera-
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tion (whether the data is read from the main memory bank
or the XOR bank) such that a subsequent write operation can
easily update the encoded XOR representation in the XOR
bank without needing to remove old data. In an alternate
embodiment there is only a read-clear operation such that
the memory controller removes the representation from the
XOR bank after every read operation. Such an implemen-
tation is referred to as a “read once” memory system since
each data item can only be read once.

The XOR system disclosed with reference to FIGS. 13 to
14G has features that make it advantageous in some appli-
cations but less than ideal in other applications. The fact that
normal single port memory can be used to implement the
main memory bank is very important. However, this comes
at the cost of requiring a user to issue a read-clear operation
before a subsequent write may be received for that address.
However, this is not a difficult restriction to follow. As with
the other XOR-based memory systems, this XOR-based
system is not ideal for wide data values since parallel data
paths from all of the different memory banks (including the
XOR bank) must be routed to the memory controller in order
to use the XOR bank properly.

In an alternate embodiment, the memory system may
handle write operation with two memory cycles. In such an
embodiment, the memory system would read the old data
value in the first memory cycle and update the XOR entry in
the second memory cycle.

Combining Algorithmic Memory Blocks

The preceding sections disclosed a set of different algo-
rithmic memory blocks that each have various unique capa-
bilities and various restrictions. By combining these differ-
ent types of algorithmic memory blocks in various
hierarchical arrangements that take advantage of the capa-
bilities and restrictions of each algorithmic memory block
then complex memory systems can be constructed that have
capabilities greater than the individual lower level memo-
ries. Thus, a synergistic effect is achieved since the capa-
bilities of whole (the complex hierarchical memory system)
is greater than the sum of'its parts (the individual algorithmic
or fundamental memory blocks).

Several examples will be provided to show the reader
several possible combinations of algorithmic or fundamental
memory blocks. However, these are only presented as
examples and various other combinations of algorithmic
memory blocks and fundamental memory blocks may also
be created as will be apparent to those skilled in the art.

A First 2 Read and 2 Write Memory Implementation

In all of the algorithmic memory blocks disclosed in the
previous sections, none of the algorithmic memory blocks
was capable of handling multiple read operations and mul-
tiple write operations simultaneously. Some algorithmic
memory blocks could handle multiple write operations by
using extra banks but only one simultaneous read operation
could be handled. Other algorithmic memory blocks could
handle multiple read operations by adding extra XOR banks
but could only handle one write operation. If one combines
the teachings from these various algorithmic memory blocks
in a hierarchical manner then one may construct a complex
memory system that can handle both multiple read opera-
tions and multiple write operations simultaneously. This
section will disclose a first complex memory system that
may handle two read operations and two write operations
simultaneously.

FIG. 15A illustrates first example of a complex memory
system that combines algorithmic memory blocks from the
previous sections in a hierarchical manner. In the hierarchi-
cal memory system of FIG. 15A, several algorithmic
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memory blocks are organized into a hierarchical arrange-
ment that allows the hierarchical memory system to perform
two simultaneous read operations and two simultaneous read
operations. Specifically, a high-level algorithmic memory
block that can handle one read operation and two simulta-
neous write operations is implemented on top of lower-level
algorithmic memory blocks that can handle two simultane-
ous read operations or one write operation. The hierarchical
combination of these two different algorithmic memory
blocks creates a memory system that can handle two simul-
taneous read operations and two simultaneous read opera-
tions (2R2W).

Since the present disclosure constructs complex hierar-
chical memory systems, the terminology must be used
carefully. This document will refer to multiple instances of
particular algorithmic memory blocks as ‘memory macros’.
The actual memory banks within a memory macro may be
constructed with fundamental memory blocks or with other
algorithmic memory blocks (that can also be referred to as
memory macros).

Referring to FIG. 15A, a first high-level organization
implements an algorithmic memory block that can handle
one read operation and two simultaneous write operations.
In the system of FIG. 15A, the algorithmic memory block
from the earlier section “Memory System 2” is used to
achieve this goal. This organization is achieved with a set of
main memory macros 1591 for storing data, a set of three
extra memory macros 1592, and a memory controller 1511.
The memory controller 1511 implements the extra-memory-
banks technique to handle simultaneous write operations.
Specifically, when the memory controller 1511 receives a set
of read and write operations addressed to the same memory
macro (in the set of main memory macros 1591) thus
causing a potential conflict then the memory controller 1511
moves any potential conflicting write operations to a new
memory macro and remaps the new location of the written
data items in the virtualized memory table 1513. Thus, this
first algorithmic memory block organization allows the
hierarchical memory system of FIG. 15A to handle two
simultaneous write operations. (Note that three extra
memory macros can be used to handle three extra write
operations, however only two extra write operations are
handled by this memory system. The reason why three extra
memory macros are required will be explained below.)

To handle two simultaneous read operations, the main
memory macros 1591 and the extra memory macros 1592
are each implemented with algorithmic memory blocks
designed to handle 2 simultaneous read operations or 1 write
operation (2R or 1W) such as the “Memory System 4~
algorithmic memory blocks. Specifically, memory macro
blocks 1520, 1521, 1522, 1523, 1541, 1542, and 1543 can
each handle two simultaneous read operations or one write
operation. Each of the memory macro blocks 1520, 1521,
1522, 1523, 1541, 1542, and 1543 includes its own memory
controller 1530, 1531, 1532, 1533, 1551, 1552, and 1553,
respectively. These memory controllers in each memory
macro block implement the XOR-based algorithmic
memory block technique used to provide the capability of
handling two simultaneous read operations or one write
operation. Thus, each individual memory macro in the
higher memory organization (made up of main memory
macros 1591, extra memory macros 1592, and memory
controller 1511) can handle two simultaneous read opera-
tions or one write operation.

Since the high level algorithmic memory block organiza-
tion (of main memory macros 1591 and extra memory
macros 1592) can handle two simultaneous write operations
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and the lower-level algorithmic memory blocks (memory
macro blocks 1520, 1521, 1522, 1523, 1541, 1542, and
1543) can handle two simultaneous read operations, the
overall hierarchical memory system 1590 of FIG. 15A is
thus capable of handling two simultaneous write operations
and two simultaneous read operations. The following para-
graphs set forth various different cases of handling two read
and two write operations.

In a trivial case, the two read and two write operations
received simultaneously all address different memory mac-
ros of the main memory macros 1591 and extra memory
macros 1592. In such cases there are no potential memory
conflicts at all such that each addressed memory macro can
handle a memory access independent of the other memory
macros

When one of the write operations has a potential memory
conflict with one of the other memory operations (either a
read or write), then the memory controller 1511 will exam-
ine the virtualized memory table 1513 to locate a free
memory macro for that write operation thus avoiding the
conflict. The memory controller 1511 then executes the write
operation into the free macro and then re-maps the address
for that write operation to the new memory macro that was
used to handle the write operation.

One particular difficult case is when all of the memory
operations (two simultaneous read operations and two
simultaneous write operations) are all directed at the same
memory macro. For example, if all four memory operations
are addressed to memory macro 1522 (in the higher level
main memory macros 1591) then the two read operations
may be handled by memory macro 1522 directly since the
memory macro is constructed with an algorithmic memory
block capable of handling two simultaneous read operations.
(Memory macro 1522 must handle both of the read opera-
tions since memory macro 1522 is the only place where the
addressed data is stored.) However, the write operations
must be directed elsewhere since the memory macro 1522
can only handle two read operations or one write operation.

To handle the write operations, the memory controller
1511 will consult the virtualized memory table 1513 to
identify two free memory macros that can handle the two
write operations. The memory controller 1511 then re-maps
the addresses of those write operations to the identified free
memory macros to avoid the potential memory conflict. For
example, the memory controller 1511 may re-map the first
write operation into extra memory macro 1541 and the
re-map the second write into extra memory macro 1542. In
this manner, the memory system 1590 simultaneously
handled two read operations and two write operations
addressed to memory macro 1522 by handling both read
operations with memory macro 1522 directly, remapping a
first write operation to extra memory macro 1541, and
remapping a second write operation to extra memory macro
1542. (Note that the location of the free memory macros will
differ based upon the current state of the virtualized memory
mapping table.)

FIG. 15B illustrates one particular difficult case that may
be solved with the third extra memory macro (in extra
memory macros 1592). In the example of FIG. 15B, a first
read operation 1571, a first write operation 1561-1, and a
second write operation 1562-1 are all directed to the same
memory macro 1521. Since the data value requested by the
read operation 1571 is only stored in that one memory macro
1521, the memory controller must access memory macro
1521 to service the read operation 1571. And since the
memory macro 1521 can only handle two read operations or
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a single write operation, the memory controller must redirect
the two write operations to different memory banks.

In this example, the memory table in memory controller
designates extra memory macros 1541, 1542, and 1543 as
the alternate memory macros for handling the write opera-
tions. However, the second read operation 1572 is directed
at memory macro 1541 such that memory macro 1541
cannot be used to handle either of the write operations. Thus,
the memory controller uses memory macro 1542 to handle
first write operation 1561-2. Finally, the memory controller
uses memory macro 1543 to handle second operation 1562-
2.

As illustrated in the example of FIG. 15B, the two read
operations (1571 and 1572) may block two of the available
memory macros for handling the write operations. And each
memory macro can handle only a single write operation.
Thus, four different memory macros must be available for
each write operation, so that a second write operation can
access a memory macro that is not being used by any of two
read operations or the first write operation. This is why the
hierarchical memory system 1590 of FIG. 15A uses three
extra memory macros 1592 (extra memory macros 1541,
1542, and 1543) instead of just two extra memory macros to
handle the two write operations.

Note that other techniques may also be used to handle this
issue of requiring four available locations to write data
values. For example, an alternate implementation may use a
cache memory within the memory controller to cache write
operations instead of using an extra memory macro. The
teachings of the Provisional Patent Application entitled
“SYSTEM AND METHOD FOR REDUCED LATENCY
CACHING?” filed on Dec. 15, 2009 having Ser. No. 61/284,
260 may be used to implement a cache system.

FIG. 15C illustrates a conceptual hierarchical block dia-
gram of the various memory components used to construct
the hierarchical memory system 1590 of FIG. 15A. Recall
that each algorithmic memory block must be implemented
with other lower level algorithmic memory blocks or lower
level fundamental memory blocks. And fundamental
memory blocks must be used to implement all of the ‘leaf’
memory blocks.

In FIG. 15C, the overall high-level memory design is a
memory system 1590 that handles two simultaneous read
operations and two simultaneous write operations. To imple-
ment these features, a one read and two simultaneous write
(1R and 2W) algorithmic memory block 1580 is used as a
high level algorithmic memory block. However, the goal is
to construct a 2R and 2W memory system. Thus, the system
must be enhanced to provide the ability of handling another
read operation.

To handle the two read operations, each individual
memory bank within the one read and two write (1R and
2W) algorithmic memory block 1580 is implemented with a
two read or one write (2R or 1W) algorithmic memory
block. Thus, below 1R and 2W block 1580 are the 1R or 1W
memory macro 1520, 1521, 1522, 1523, 1541, 1542, and
1543 that provide memory service to algorithmic memory
block 1580. In addition, the 1R and 2W algorithmic memory
block 1580 also uses a fundamental SRAM memory block
1503 to implement the memory table within the memory
controller (virtualized memory table 1513 as illustrated in
FIG. 15A) to keep track of which addresses are stored in
which memory macros. Since each memory bank within the
1R and 2W algorithmic memory block 1580 can now handle
two read operations simultaneously, the overall hierarchical
memory system 1590 is now a 2R and 2R memory system.
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Every memory block must ultimately terminate with some
type of fundamental memory block that actually provides
the storage circuitry. Thus, each of the two read or one write
algorithmic memory blocks (2R or 1W memory blocks
1520, 1521, 1522, 1523, 1541, 1542, and 1543) must also be
implemented with some type of underlying memory system.
In the embodiment illustrated in FIG. 15C, each of the two
read or one write algorithmic memory blocks 1520, 1521,
1522, 1523, 1541, 1542, and 1543 is implemented with a
fundamental embedded DRAM memory block. Note that
any other type of appropriate fundamental memory system
such SRAM may also be used. The selection will depend
upon the demands of the particular memory application.

Thus, as illustrated in FIG. 15C, a complex memory
system with new features (the ability to handle two read
operations and two write operations all simultaneously) can
be implemented by organizing algorithmic memory blocks
with less features such as (1R and 2W) memories and (2R
or 1W) memories in a hierarchical arrangement. Each algo-
rithmic memory block consists of a memory controller
implementing control logic for a particular algorithmic
memory and one or more lower-level memory systems. Each
of'the lower level memory systems may be other algorithmic
memory blocks or fundamental memory blocks. Ultimately,
at the ‘leaf” ends of the hierarchical memory system arrange-
ment, some type of fundamental memory block is used to
provide fundamental memory storage capabilities.

A First n Read and m Write Memory Implementation

The two read and two write (2R2W) hierarchical memory
system of the previous section can be generalized into an n
read and m write memory system that can handle n simul-
taneous read operations and m simultaneous write opera-
tions. FIG. 16 illustrates an n read and m write memory
system that uses the same general hierarchical, architecture
as the system of FIG. 15A.

In the hierarchical memory system of FIG. 16, a set of
main memory macros 1691 are used to store data and a set
of extra memory macros 1692 are used to handle potential
memory conflicts between write operations and other
memory operations attempting to access the same memory
macro. The algorithmic memory block from the section
“Memory System 2” may be used to achieve this goal. The
number of extra memory macros 1692 should be large
enough such that there will be enough available memory
macros to handle all m write operation even in the worst case
of memory conflicts between read operations and write
operations. The memory controller 1611 uses a virtualized
memory table 1613 to keep track of the current physical
location of each data value. Specifically, the virtualized
memory table 1613 specifies which virtualized memory
addresses are stored in which physical memory macros.
Note that the virtualized memory table 1613 itself may be
constructed using an algorithmic memory block.

In a system that handles n simultaneous read operations
and m simultaneous write operations then n+m-1 extra
memory macros will always ensure that there are enough
extra memory macros to move the addresses of write opera-
tions that conflict with other memory accesses. However,
other memory means, such as write buffers, may also be
used to handle conflicting write operations such that the
n+m-1 extra memory macros will not always be required.

Each of the individual memory macros within the main
memory macros 1691 and extra memory macros 1692 are n
read or one write (nR or 1W) memory macros implemented
with an algorithmic memory block (or hierarchy of memory
blocks). For example, the XOR-based algorithmic memory
block from the section “Memory System 6” may used to
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provide the n read or one write feature. In this manner, even
if when all n read operations are directed toward the same
memory macro, that memory macro will be able to respond
to all n read operations simultaneously.

A Second 2 Read and 2 Write Memory Implementation

In the two read and two write memory system disclosed
in a previous section, a high-level multiple-write algorithmic
memory block was constructed using multiple-read algo-
rithmic memory blocks as subcomponents. This architecture
may be reversed such that a two read and two write memory
system may be constructed as a high-level multiple-read
algorithmic memory block that uses multiple-write algorith-
mic memory blocks as subcomponents.

FIG. 17A illustrates second example of a hierarchical
memory system that can handle two read operations and two
write operations simultaneously. Referring to FIG. 17A, a
first high-level organization implements an algorithmic
memory block that can handle two simultaneous read opera-
tions or one write operation using the XOR-based system
disclosed in the section on “Memory System 4. Specifi-
cally, the first high-level organization has a set of main
memory macros 1791 for handling normal read or write
operations and an XOR macro 1792 for handling a second
read operation. The XOR macro 1792 contains an encoded
representation of the data from the other main memory
macros 1791. Thus, when two read operations are received,
one read operation can be serviced directly by a bank in the
set of set of main memory blocks 1791 and the other read
operation can be serviced by another of the main memory
blocks (when there is no conflict) or by using the encoded
version of data within the XOR macros 1792 (when both
read requests are addressed to the same memory macro in
the set of main memory macros 1791).

To handle two simultaneous write operations in addition
to the two read operations, each of the main memory macros
1791 and the XOR macro 1792 are implemented with an
algorithmic memory block from the “Memory System 2”
section that discloses a one read and n write algorithmic
memory block. In the embodiment of FIG. 17A, each of the
main memory macros 1791 and the XOR macro 1792 can
handle one read and two write operations simultaneously.
Specifically, any of the main memory blocks 1791 can
handle the worst case scenario of one read operation and two
write operations simultaneously attempting to access the
same memory bank in the same memory macro. And the
XOR macro 1792 can be used to handle an extra read
operation such that two read operations and two write
operations can handled simultaneously.

FIG. 17B illustrates the case wherein all four memory
operations (a read from address W, a read from address X,
a write to address Y, and a write to address Z) are all directed
toward a single memory bank (the second block from the
left) within memory macro 1720. A first read operation 1771
(from address W) is handled directly by that addressed
memory bank within memory macro 1720. Since that inter-
nal memory bank within memory macro 1720 is being used
to handle the first read, it cannot be used by any of the other
memory operations. To indicate this blockage, the targeted
memory bank within memory macro 1720 is marked with an
“W”. All three remaining memory operations (the read from
address X and the writes to addresses Y and Z), cannot use
that memory bank labelled “W” within memory macro
1720.

Since the second read operation 1772-1 directed at
address X cannot directly access that same targeted bank
within memory macro 1720, the second read operation must
be handled using the encoded version of the data within the
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XOR macro 1792. Thus, the memory controller for the
high-level organization of the memory system reads the
corresponding location in within the XOR macro 1792 with
read operation 1772-5 to obtained the encoded representa-
tion of the data. To decode the encoded representation, the
memory controller must also read the corresponding loca-
tions in all of the other memory macros. Thus, the memory
controller reads from the second from the left memory bank
within memory macros 1721, 1722, and 1723 with read
operations 1772-2,1772-3, and 1772-4. The data values read
from read operations 1772-5, 1772-2, 1772-3, and 1772-4
are combined with an XOR operation to produce the
requested data value for the read operation to address X.
(The main representation of the address X data was in the
second from the left memory bank in memory macro 1720
that could not be accessed due to a conflict with the read to
address W.) The memory banks accessed by read operations
1772-5, 1772-2, 1772-3, and 1772-4 to handle the second
read operation cannot be used by any of the other memory
operations. To indicate this blockage, the memory banks
accessed with read operations 1772-5, 1772-2, 1772-3, and
1772-4 are marked with a “X”.

The two write operations 1775-1 are also blocked from
accessing the targeted (second from left) memory bank in
memory macro 1720 such that the memory controller of
memory macro 1720 must direct the two write operations
1775-1 to other (free) memory banks within memory macro
1720. The memory controller of memory macro 1720 then
remaps the target addresses (Y and Z) associated with the
two write operations 1775-1 in a virtualized address table
within memory macro 1720. However, since the higher-level
structure of main memory macros 1791 and the XOR macro
1792 is an XOR-based system that must also keep an
encoded version of each value written into the memory
system, the high level memory controller must also update
XOR macro 1792 with the data written to addresses Y and
Z.

To update the XOR macro 1792, for each of the write
operations, the high-level memory controller reads the cor-
responding locations of the write operation in all of the other
main memory macros (memory macros 1721, 1722, and
1723), combines that data with the new data value being
written into memory macro 1720 with an XOR operation,
and writes the result into the corresponding location in the
XOR macro 1792. For example, to handle the write to
address Y, the system writes the data into a free memory
bank in memory macro 1720 (depicted as the Y’ in memory
macro 1720), reads the corresponding location in the other
main memory macros (as depicted by reads 1775-2, 1775-3,
and 1775-4), combines the data from those reads with the
new data for address Y using an XOR operation, and then
writes that encoded version into the XOR macro 1792 with
write 1775-5. All of the memory banks that are accessed by
the writes to addresses Y and Z are marked as “Y” and “Z”
respectively.

Note that memory macros 1721, 1722, and 1723 are all
actually handling three write operations simultaneously
even though those memory macros are only designated as 1
Read and 2 Write (1R and 2W) memories. This is possible
since these three memory read operations are ‘load bal-
anced’ such that they will always access different memory
banks. The load-balancing occurs due to the resolution of
potential bank conflict in memory macro 1720 that moves
the two write operations (to addresses Y and 7Z) to different
memory banks. And since the memory banks in each
memory bank are independent from each other, memory
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macros 1721, 1722, and 1723 can handle the three ‘load-
balanced’ read operations simultaneously.

As illustrated in FIG. 17B, all four memory operations (a
read from address W, a read from address X, a write to
address Y, and a write operation to address Z) to a single
memory bank in a single memory macro 1720 can be
handled simultaneously by the hierarchical memory system
of FIG. 17B. All of the memory banks that were accessed
(with either a read or a write) are labelled with the letter of
the address from the original memory operation (W, X, Y, or
Z.). The read from address W only accessed the one bank
that stored the main representation of the data. The read from
address X accessed the encoded representation from the
XOR macro 1792 and three data values from memory
macros 1721, 1722, and 1723 to decode the encoded rep-
resentation. The writes to both address Y and Z each
accessed five different memory banks: a write to a bank in
memory macro 1720 to store the main representation; reads
from memory macros 1721, 1722, and 1723 to create an
encoded representation; and a write to XOR macro 1792 to
store the encoded representation. None of these many
memory operations conflict with each other.

FIG. 17C illustrates a particularly difficult case for the 2R
and 2W hierarchical memory system of FIG. 17A. The case
of FIG. 17C explains why three extra banks are used within
each of the main memory macros 1720 to 1723 and XOR
macro 1731. In the example of FIG. 17C, a first read
operation 1771 directed to address W and two write opera-
tions 1775-1 to addresses Y and Z all target the same
second-from-left bank in memory block 1720. The memory
controller for memory block 1720 allows the read to address
W 1771 to access the bank to obtain the data needed to
respond to the read operation. Thus, the memory controller
for memory block 1720 must move the writes to addresses
Y and Z to different memory banks that are available to
accept the memory writes.

In this example, the three extra memory banks are deemed
to be the currently available memory banks for accepting the
write operations to addresses Y and Z. However, the second
read operation 1772 is accessing one of the extra memory
banks in memory macro 1721 Since, a write operation (into
memory macro 1720 in this example) must also read access
the corresponding memory bank in every other memory
macro (memory macros 1721, 1722, and 1723 in this
example) in order to update the XOR macro 1792 with the
second representation of data, the writes cannot access the
same extra memory bank as that second read operation 1772.
Thus, when handling the write operations to addresses Y and
Z the system cannot access the first of the extra memory
banks since that first extra memory bank is being used by the
read from address X 1772. Therefore, the system directs the
write operations to addresses Y and Z 1775-1 to the last two
extra memory banks in the memory macro 1720. This
prevents a memory bank conflict in memory macro 1721
since the read 1772 of address X reads from the first extra
memory bank and the two writes (to address Y and Z) can
read from the last two extra memory banks in the memory
macro 1721 as needed to update the XOR block 1792. Thus,
the use of three extra memory banks in each of the memory
blocks 1721, 1722, and 1723 and XOR macro 1731 allows
the two write operations to avoid a conflict with either of the
two read operations.

FIG. 17D illustrates a hierarchical block diagram of the
overall high level memory design of the memory system
disclosed in FIGS. 17A to 17C that handles two simultane-
ous read operations and two simultaneous write operations.
To implement the memory system, a two read algorithmic
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memory block 1780 is used as a high level algorithmic
memory block. This high-level structure allows the hierar-
chical memory system to handle two simultaneous read
operations.

To handle the two write operations, each of the five
individual memory blocks within the high-level two read
algorithmic memory block 1780 is implemented one read
and two write algorithmic memory blocks (algorithmic
memory blocks 1720, 1721, 1722, 1723, and 1731). Com-
bining the multiple write capability of these lower memory
blocks with the two read capability of the higher-level
organization allows the full hierarchical memory system to
handle two simultaneous reads and two simultaneous writes.

As set forth earlier, all of the algorithmic memory blocks
must eventually terminate at the final “leaf” level with some
type of fundamental memory block used to provide actual
storage circuitry. In the memory system disclosed in FIGS.
17A to 17C, the lower algorithmic memory blocks are the
one read and two write algorithmic memory blocks (algo-
rithmic memory blocks 1720, 1721, 1722, 1723, and 1731).
In the specific example embodiment of FIG. 17D, the
memory banks of the one read and two write algorithmic
memory blocks are each implemented with embedded
DRAM memory 1760 to 1764 and the virtualized memory
tables are implemented with fundamental SRAM 1765 to
1769. Other embodiments may use other memory choices as
long as the required performance metric for the memory
system are met.

Thus, as illustrated in FIGS. 17A to 17D, the ability to
handle two read operations and two write operations all
simultaneously can be implemented with an alternate hier-
archical arrangement other than the arrangement presented
in FIGS. 15A to 15C. In both hierarchical memory systems,
each algorithmic memory block consists of a memory con-
troller implementing control logic and one or more lower-
level memory blocks. Each lower level memory block may
be other algorithmic memory blocks or fundamental
memory blocks. And the very lowest level (’leaf) ends of the
hierarchical memory system arrangement are implemented
with some type of fundamental memory block to provide
fundamental memory storage capabilities. The memory
architecture of FIGS. 17A to 17D, can extended to handle
more simultaneous read operations by adding more XOR
blocks and more write operations by adding more memory
banks within each memory macro.

Other Hierarchical Memory Arrangements

Using the various different algorithmic memory blocks
disclosed and various different types of fundamental
memory devices, a wide variety of complex hierarchical
memory systems may be constructed. Furthermore, memory
systems that provide the same general functional character-
istics, such as the number of simultaneous read and write
operations supported, may be created in many different
ways.

FIG. 18 illustrates a chart with a horizontal axis specify-
ing a number of simultaneous write operations supported
and a vertical axis specifying a number of simultaneous read
operations supported. Any point on the graph represents a
possible memory system that may be constructed with a
hierarchical intelligent memory system. In the upper right,
location system 1890 represents a memory system that
supports four read operations and four write operations. That
four read and four write memory system at position 1890
may be constructed in a variety of different manners.

A first method of constructing a four read and four write
memory system 1890 is to used the teachings disclosed in
FIG. 16 wherein a high-level algorithmic memory block
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organization uses extra memory banks to support multiple
write operations. This is represented on FIG. 18 by the
horizontal dot-dashed line 1811 to support four write opera-
tions. The individual memory banks are then implemented
with an XOR-based algorithmic memory block organization
that supports multiple read operations. This is represented on
FIG. 18 by the vertical dot-dashed line 1815 to support four
read operations.

A second method of constructing a four read and four
write memory system 1890 is to used the teachings disclosed
in FIGS. 17A to 17D wherein a high-level algorithmic
memory block organization uses XOR banks to support
multiple read operations. This is represented on FIG. 18 by
the vertical solid line 1831 to support four read operations.
The individual memory blocks within the high-level struc-
ture may be implemented with algorithmic memory blocks
that contain extra memory banks for supporting additional
write operations. This is represented on FIG. 18 by the
horizontal sold line 1835 to support four write operations.

Other methods of constructing a four read and four write
memory system 1890 may use other hierarchical structures
that follow a path within the graph of FIG. 18. For example,
one possible arrangement may use a first memory organi-
zational layer to create a 1 read and 1 write memory system
as depicted by dashed diagonal line 1861, a second memory
organizational layer to implement three additional write
operations as depicted by horizontal dashed line 1862, and
a third memory organizational layer to implement three
additional read operations as depicted by vertical dashed line
1863

The preceding technical disclosure is intended to be
illustrative, and not restrictive. For example, the above-
described embodiments (or one or more aspects thereof)
may be used in combination with each other. Other embodi-
ments will be apparent to those of skill in the art upon
reviewing the above description. The scope of the claims
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled. In the appended claims, the
terms “including” and “in which” are used as the plain-
English equivalents of the respective terms “comprising”
and “wherein.” Also, in the following claims, the terms
“including” and “comprising” are open-ended, that is, a
system, device, article, or process that includes elements in
addition to those listed after such a term in a claim is still
deemed to fall within the scope of that claim. Moreover, in
the following claims, the terms “first,” “second,” and
“third,” etc. are used merely as labels, and are not intended
to impose numerical requirements on their objects.

The Abstract is provided to comply with 37 C.EFR.
§1.72(b), which requires that it allow the reader to quickly
ascertain the nature of the technical disclosure. The abstract
is submitted with the understanding that it will not be used
to interpret or limit the scope or meaning of the claims. Also,
in the above Detailed Description, various features may be
grouped together to streamline the disclosure. This should
not be interpreted as intending that an unclaimed disclosed
feature is essential to any claim. Rather, inventive subject
matter may lie in less than all features of a particular
disclosed embodiment. Thus, the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on its own as a separate embodiment.

We claim:

1. A digital memory circuit, comprising:

a set of low-level memory block circuits, each of said
low- level memory block circuits comprising
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a set of memory banks each having a plurality of entries
for storing data, and

a first type of memory controller configured to resolve
a memory access conflict of accessing a first entry
and a second entry in a first memory bank of the set
of memory banks during one clock cycle by servic-
ing access to the first entry of the first memory bank
and a third entry of a second memory bank of the set
of memory banks and performing a first address
translation to map a first address originally targeting
the second entry in the first memory bank to a
physical address of the third entry in the second
memory bank; and

a high-level memory block circuit, comprising

said set of low-level memory block circuits, and

a second type of memory controller configured to
resolve a memory access conflict of accessing mul-
tiple entries in a target memory bank of a target
low-level memory block circuit during one clock
cycle by servicing access to at least a target entry in
the target memory bank of the target low-level
memory block circuit and at least a non-target entry
in a non-target memory bank of a non-target low-
level memory block circuit and performing a second
address translation to map a third address originally
targeting the target memory bank of the target low-
level memory block circuit to the non-target memory
bank of the non-target low-level memory block
circuit.

2. The digital memory circuit as set forth in claim 1
wherein said first type of memory controller is configured to
support multiple simultaneous read operations.

3. The digital memory circuit as set forth in claim 2
wherein said first type of memory controller is configured to
store a primary data value and secondary encoded version
for each data item in different memory banks.

4. The digital memory circuit as set forth in claim 3
wherein said secondary encoded version comprises data
values from a plurality of different memory banks combined
together with an exclusive-OR operation.

5. The digital memory circuit as set forth in claim 2
wherein said second type of memory controller is configured
to support multiple simultaneous write operations such that
said digital memory circuit can process multiple read opera-
tions and multiple write operations simultaneously.

6. The digital memory circuit as set forth in claim 5
wherein said second type of memory controller is configured
to use extra low-level memory block circuits to prevent
memory bank conflicts.

7. The digital memory circuit as set forth in claim 1
wherein said first type of memory controller is configured to
support multiple simultaneous write operations.

8. The digital memory circuit as set forth in claim 7
wherein said first type of memory controller is configured to
use extra memory banks and a remapping table to prevent
memory bank conflicts.

9. The digital memory circuit as set forth in claim 7
wherein said second type of memory controller is configured
to support multiple simultaneous read operations such that
said digital memory circuit can process multiple read opera-
tions and multiple write operations simultaneously.

10. The digital memory circuit as set forth in claim 9
wherein said second type of memory controller is configured
to store a primary data value and secondary encoded version
for each data item in different memory banks.

11. The digital memory circuit as set forth in claim 10
wherein said secondary encoded version comprises data
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values from a plurality of different low-level memory block
circuits combined together with an exclusive OR operation.

12. A method of handling memory access requests in a
digital memory circuit, said method comprising:

processing a memory request with a first type of memory

controller, said first type of memory controller imple-
menting a first type of memory technique by selecting
at least one lower-level memory block circuit from a
plurality of lower-level memory block circuits to pro-
cess said memory request; and

processing said memory request with a second type of

memory controller in said at least one lower-level
memory block circuit, wherein the at least one lower-
level memory block circuits comprises a set of memory
banks and said second type of memory controller
implements a second type of memory technique by
resolving a memory access conflict caused by the
memory request of accessing a first entry and a second
entry in a first memory bank of the set of memory banks
during one clock cycle, and the second type of memory
technique includes:
servicing access to the first entry of the first memory
bank and a third entry of a second memory bank of
the set of memory banks, and
performing an address translation to map a first address
originally targeting the second entry in the first
memory bank to a physical address of the third entry
in the second memory bank.

13. The method of claim 12 wherein said first type of
memory technique allows for multiple simultaneous read
operations.

14. The method of claim 13 wherein said first type of
memory technique stores a primary data value and second-
ary encoded version for each data item in different memory
banks.

15. The method of claim 14 wherein said secondary
encoded version comprises data values from a plurality of
memory banks combined together with an exclusive OR
operation.

16. The method of claim 13 wherein said second type of
memory technique allows for multiple simultaneous write
operations such that said digital memory circuit can process
multiple read operations and multiple write operations
simultaneously.

17. The method of claim 16 wherein said second type of
memory technique uses extra memory banks to prevent
memory bank conflicts.

18. The method of claim 12 wherein said first type of
memory technique allows for multiple simultaneous write
operations.

19. The method of claim 18 wherein said first type of
memory technique uses extra lower-level memory block
circuits and a remapping table to prevent more than one
write operation per lower-level memory block circuit.

20. The method of claim 18 wherein said second type of
memory technique allows for multiple simultaneous read
operations such that said digital memory circuit can process
multiple read operations and multiple write operations
simultaneously.

21. The method of claim 20 wherein said second type of
memory technique stores a primary data value and second-
ary encoded version for each data item in different memory
banks.

22. The method of claim 21 wherein said secondary
encoded version comprises data values from a plurality of
different memory banks combined together with an exclu-
sive OR operation.



